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Wind-energy manufacturers are adopting circular business models integrating new-build and remanufactured nacelles. 

This study formulates a multi-period stochastic MILP program for closed-loop supply planning that allocates capacity 

between manufacturing and remanufacturing under uncertain demand and core returns. Uncertainty is addressed via 

Sample Average Approximation, and sustainability is internalized through an ε-constraint on expected emissions to 

generate a profit–emissions Pareto frontier. The model, implemented using open-source Python and Excel tools, reveals 

how emission caps shift production toward remanufacturing and provides managerial insights on capacity allocation, 

channel interactions, and the marginal cost of carbon abatement. 
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1. Introduction 
The wind sector faces the dual imperative of scaling capacity and reducing lifecycle emissions. In parallel, many OEMs are 

experimenting with circular models—such as buybacks and remanufacturing of nacelles—to reduce embodied carbon and 

create new revenue streams from returned cores. However, planning such closed-loop systems requires simultaneously 

coordinating forward and reverse flows under uncertainty in demand, return availability and quality yields, and grade-

dependent sales channels. Classic newsvendor or deterministic network design abstractions are too coarse to capture these 

intertwined effects. Instead, we adopt a stochastic, multi-period planning model that chooses production, remanufacturing 

throughput, inventory, and sales quantities per scenario, with an explicit environmental objective captured through an 

emissions cap. The resulting trade-off between financial performance and decarbonization is summarized by a profit–

emissions frontier (Pareto set), which is particularly useful for communicating to executives and policy stakeholders. 

Methodologically, our approach builds on fundamental results in stochastic programming and SAA, which approximate 

intractable expectations by sample averages and deliver asymptotic guarantees on optimality and consistency (Birge & 

Louveaux, 2011; Kleywegt, Shapiro, & Homem-de-Mello, 2002). From a supply-chain perspective, the paper aligns with the 

literature on closed-loop supply chains (CLSCs), remanufacturing economics, and channel design to mitigate cannibalization 

between remanufactured and new products (Guide & Van Wassenhove, 2009; Atasu, Sarvary, & Van Wassenhove, 2008). 

We operationalize these ideas in an implementable optimization template that reads scenarios from an Excel workbook and 

produces a frontier plot and optimized decision tables, making the method accessible to practitioners and scholars. 

 

2. Literature Review 
Closed-loop supply chains focus on recovering value from returned products through reuse, remanufacturing, and recycling, 

integrating reverse logistics with forward planning. Foundational reviews have tracked the field’s evolution from engineering-

focused case studies to quantitative decision models that weigh profitability against environmental outcomes and market 

impacts (Guide & Van Wassenhove, 2009; Govindan, Soleimani, & Kannan, 2015). In wind and other capital goods, 

remanufacturing quality grading and warranty considerations complicate channel strategy and pricing. Moreover, capacity 

coupling between new-build and reman lines can induce nontrivial trade-offs when emissions constraints are active (Ponte, 

Alvarez, & Atasu, 2021). 

On the uncertainty side, stochastic programming and SAA provide a principled route to decision making under risk. The 

SAA framework replaces the true expected objective with a sample average over Monte Carlo scenarios, solves the resulting 

deterministic program, and, when repeated with independent batches, enables statistical validation and optimality-gap 

estimation (Kleywegt et al., 2002; Verweij, Ahmed, Kleywegt, Nemhauser, & Shapiro, 2003; Birge & Louveaux, 2011). For 

multi-objective settings, the  -constraint method is a standard scalarization that enforces a hard bound on one objective (e.g., 

emissions) while optimizing another (profit), and sweeping   yields a well-populated Pareto frontier suitable for managerial 

interpretation (Mavrotas, 2009). The broader circular-economy context underscores why such trade-offs matter in practice 

(Ellen MacArthur Foundation, 2013). 
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3. Model and Methods 
Notation and Decision Variables are given below. 

 

Sets and indices:  

Periods    {     };  
Scenarios     with probabilities   ;  

Customer segments   ;  

grades     {     } (new, reman Grade-A, reman Grade-B). 

 

Parameters (data):  

Demand     ;  

Available cores for buyback ‾  ;  

Reman yields    
      

      
  (with          );  

Prices      (exogenous);  

Unit costs  
 ,   

  ,   
  ;  

Holding costs    ;  

Unmet-demand penalty   ;  

Capacities ‾  
 ,  ‾  

  ;  

Emission factors  ,   ,   ;  

Initial inventories   
    

    
  and initial cores  . 

 

Decision variables per     :  

New build    
 ;  

Cores bought    ;  

reman throughput    ;  

Reman outputs by grade    
     

     ,    
     

     ;  

End-of-period inventories   
     

     
 ;  

Core inventory   ;  

Sales    
      

      
 ;  

Unmet demand    . 

 

Flow Balance and Capacity Constraints: 

Core balance and availability 

 

                          ‾    
 

Finished-goods inventories (for   {     }): 
 

   
        

     
  ∑     

 

   

 

   
        

     
  ∑     

 

   

 

   
        

     
  ∑     

 

   

 

 

 

Demand satisfaction by segment 

 

∑     
 

  {     }

                  

 

Production Capacities 

 

   
   ‾  

         ‾  
    

 

Optional channel exposure limits (to mitigate cannibalization): 
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Objective and  -Constraint (Profit–Emissions Frontier) 

We maximize expected profit across scenarios while enforcing a bound on expected emissions (the  -constraint). The 

expected-profit objective is 

 

    ∑   

   

∑ 

   

∑ ∑     

  {     }   

     
 

 (  
    

    
        

     )

   ∑    

  {     }

   
 

 ∑    

   

      
 

 

Expected cradle-to-gate emissions are constrained by 

 

∑   

   

∑       
       

       
  

   

      

 

Sweeping   over a grid yields the Pareto-efficient profit–emissions frontier. An alternative scalarization uses an internal 

carbon price   in the objective 

 

       evenue   ost       missions   
 

Under convexity, varying   recovers the same efficient set (Mavrotas, 2009). 

 

Uncertainty via Sample Average Approximation (SAA) 

Let        denote the one-period profit contribution given decision vector   and random vector   (demands, core availability, 

yields). The true objective is the expectation 

 

                
 

SAA draws an i.i.d. sample {       } and solves the sample-average problem 

 

 ̂     
 

 
∑ 

 

   

        

 

As   , SAA solutions converge to true optima under mild regularity, and optimal values satisfy a law of large 

numbers; batching and out-of-sample evaluation provide empirical confidence on solution quality (Birge & Louveaux, 2011; 

Kleywegt et al., 2002; Verweij et al., 2003). 

 

3.1 Data and Experimental Design 

We construct a realistic, anonymized dataset to illustrate the method: three periods, two customer segments (premium and 

utility), and three grades (     ). Prices are exogenous by grade and segment (higher in premium), and costs include new-

build, core buyback, reman processing, and inventory holding. Scenario uncertainty spans segment demands, available cores 

for buyback, and reman yield shares for A/B/Scrap that sum to one. Capacities differ by period. Emission factors reflect 

cradle-to-gate accounting (highest for new build, lower for reman grades). All inputs are provided in an Excel workbook with 

sheets for periods, segments, grades, prices, costs, holding, penalties, alpha-limits, capacities, emissions, initial inventories, 

scenarios, demand, cores, yields, and a grid of emissions caps. 

For numerical illustration, we sweep seven cap values   {                            }. For each  , the model is 

solved with the open-source CBC solver via PuLP, and expected profit/emissions are recorded to trace the frontier. While the 

dataset is synthetic, parameter magnitudes are selected to be plausible for heavy equipment and aligned with CLSC 

economics reported in the literature (Guide & Van Wassenhove, 2009; Govindan et al., 2015). 

 

4. Results 
Figure 1 and Table 1 show expected profit versus expected emissions across  . The curve is concave and decreasing, 

revealing efficient trade-offs. At tight caps (     ), the solution prioritizes reman throughput, uses premium-channel 

exposure limits to protect new-product margins, and tolerates some unmet demand in the utility segment if penalties are 

modest. As   increases, new-build output ramps up, inventories are used more aggressively to satisfy premium orders, and 

core purchases decouple from reman capacity as scrap rates bind. Kinks on the frontier correspond to binding capacity 

constraints or alpha limits, which are managerially interpretable milestones of decarbonization. 
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Figure 1 Profit-Emissions Frontier 
 

Table 1 Profit–Emissions Frontier 

Emissions Cap Status Expected Profit Expected Emissions 

400 Optimal 5712.464985 400.0000034 

500 Optimal 6290.186317 500.0000029 

600 Optimal 6840.186328 600.0000054 

700 Optimal 7339.06324 700.0000054 

800 Optimal 7779.063242 800.0000059 

900 Optimal 8171.037703 900.0000054 

1000 Optimal 8496.55894 1000.000005 

 

The production mix graph (Figure 2) shows how the optimized supply chain shifts strategically from new manufacturing to 

remanufacturing across the planning horizon. In the early period, the model relies more on new production to meet demand, 

but this quickly declines as returned cores become available. Remanufacturing remains consistently high across all periods, 

indicating that the optimization prioritizes cost efficiency and emission reduction by leveraging recovered components 

whenever possible. This pattern reflects the closed-loop structure of the problem, where returns in earlier periods enhance 

remanufacturing capacity in subsequent periods.  

The sales and emissions graphs together (Figure 3 and 4) illustrate how this production strategy affects both market output 

and sustainability performance. Sales by grade reveal that high-quality Grade N units dominate initially, while Grade A and B 

remanufactured units take on a greater role later, ensuring demand fulfilment while minimizing penalties. The emissions 

breakdown further confirms the environmental advantage of remanufacturing: although new production contributes the 

largest single share of emissions, Grades A and B together represent a substantial portion of output at significantly lower 

emission intensity. Overall, the optimized plan achieves a balanced trade-off between profitability, demand satisfaction, and 

compliance with emission constraints 

 

Figure 2 Production Mix Graph 
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Figure 3 Expected Sales by Grades 

 

 
Figure 4 Expected Emissions Breakdown 

 

4.1 Discussion and Managerial Implications 

The frontier reveals how the marginal cost of abatement evolves as emissions are tightened. Near      , moving one step 

left on the curve requires reallocating capacity from new build to reman and relaxing premium exposure limits, which can be 

costly in foregone margins. Conversely, beyond      , additional emissions headroom mostly produces new units and 

yields diminishing profit gains because demand saturation in the utility segment and inventory carrying costs start to bind. 

From a policy perspective, the frontier makes transparent the range of internal carbon prices (shadow prices of the  -

constraint) that are consistent with observed decarbonization choices, offering a way to benchmark carbon budgets and 

procurement incentives (Mavrotas, 2009; Ellen MacArthur Foundation, 2013). 

 

4.2 Limitations and Future Research 

Our linear model abstracts from price endogeneity and strategic competition; prices are treated as exogenous. Incorporating 

price–demand curves and market equilibrium would turn the planning problem into a mathematical program with equilibrium 

constraints. We also assume deterministic lead times and ignore warranty feedbacks. Extensions could include dynamic 

pricing, endogenous core-supply incentives, multi-plant networks, and robust or distributionally robust formulations for 

heavy-tailed uncertainties. Finally, empirical validation on proprietary wind fleet data would strengthen external validity 

(Birge & Louveaux, 2011; Guide & Van Wassenhove, 2009). 

 

5. Conclusion 
We presented a practical stochastic programming template for closed-loop planning of wind-turbine nacelles that integrates 

SAA for uncertainty and an  -constraint for emissions. The resulting profit–emissions frontier helps managers and 

policymakers visualize efficient decarbonization pathways and quantify shadow prices of carbon. Because the model reads 

Excel scenarios and is implemented with open-source tools, it is immediately replicable and extensible to richer settings, 

including policy analysis, multi-plant networks, and price-sensitive demands. 
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