

AI Agility and Ethics in Sustainable Brand Equity: Moderating Role of AI Literacy

ISBN: 978-1-943295-26-5

Suraj Shah
Priyanka Pathak
Mahendra Sharma
Remi Mitra
Ganpat University
(chairperson.gca@guni.ac.in)
(chairperson.cms@ganpatuniversity.ac.in)
(prochancellor@ganpatuniversity.ac.in)
(cro.gcc@ganpatuniversity.ac.in)

The study developed a two-pathway model of AI-driven predictive agility (AIPA) and Ethical Consumer Experience (ECE) as key antecedents of Sustainable Brand Equity (SBE) in the current investigation. Based on the Resource-Based View and Stakeholder theory, the framework argues that, due to high-market foresight, AIPA will enhance the brand sustainability, and, through the development of consumer trust and moral congruence. Furthermore, the Consumer Perceived AI Literacy (CPAL) is a moderating factor of the relationship between ECE and SBE. The model enhances the impact of technological agility and ethical intelligence in a co-determination manner to create sustainable brand equities.

Keywords: AI Agility, Sustainable Brand Equity, AI Literacy, Ethical Intelligence, AI Literacy

1. Introduction

1.1 Research Background

The present-day business environment is manifested by two forces that are present in its environment: the extending adoption of the Artificial Intelligence (AI) concept and the increased pressure on companies to be ethical and sustainable. Companies are also beginning to use AI with unprecedented markets responsiveness and predictive intelligence (Jo, 2025). At the same time, consumers are increasingly questioning brand behaviours in a way never witnessed before due to the availability of information and the social and environmental issues they bring. This is a dual-pressure environment, which requires a reassessment of the underlying drivers of brand value. Conventional approaches to brand equity which have tended to be more on the perception of quality and awareness are no longer adequate to measure the complexity of developing a brand that is technologically efficient and ethically correct (France et al., 2025). Long-term brand resilience, conceptualized as a Sustainable Brand Equity (SBE) has thus become an important strategic goal, founded on the economic, social, environmental performance (Biedenbach, 2025).

1.2 Research Gap, Theoretical Framework and Problem Statement

Although the importance of AI and ethics have been established, there is a notable void in the literature in the relationship between the synergistic and concurrent effects of AI and ethics on SBE. The existing studies are inclined to consider these spheres separately. A body of literature holds the wonders of AI-based powers as sources of competitive edge, and they center on operational efficiencies and predictive accuracies. The other stream focuses on business ethics and social corporate responsibility, which is often not related to the technological architecture of the company. This segregation generates a blind spot (Olatoye et al., 2024).

This research paper establishes a complex research gap. In the first place, there is no unified theoretical framework that can describe a situation when technological capabilities (AIPA) and ethical consumer perceptions (ECE) co-construct SBE. The literature that is available has not sufficiently investigated whether these are complementary, competing or independent pathways. Secondly, AI in SBE construction is not well comprehended and most times creates a paradox regarding that even though it can be useful in terms of efficiency and personalization, it results in serious ethical issues concerning data privacy, algorithmic bias, and transparency that may, in turn, undermine brand equity. It is also not very clear on how companies can use this two-sided sword to make a net-positive contribution to sustainability (Sarioguz & Miser, 2024). Third, a practical issue remains among the managers who are making substantial investments in AI technologies and cannot turn the investments into long-term, reliable brand value, they have their share in the mainstream press, and those who are committing ethical errors are being subjected to public criticism and scrutiny (Pinski et al., 2024).

As such, the available body of literature lacks a comprehensive paradigm through which companies can strike the right balance between innovations and ethics in order to develop SBE in the digital era.

1.3 Research Objectives and Questions

In the exploration to fill the above gaps, the following are the objectives that this study will attempt to address:

- The objective of this research is to formulate and experiment with a two-node model that would explore the unique effects of AI-driven Predictive Agility (AIPA) and Ethical Consumer Experience (ECE) on Sustainable Brand Equity (SBE).
- The research question will be as follows:
- In order to offer a theoretically based model integrating Resource-Based View (RBV) and Stakeholder Theory to understand the co-creation of SBE.

The main research questions are the following in light of these goals

- How is the effect of AI-driven Predictive Agility and Ethical Consumer Experience independent contributors to the development of Sustainable Brand Equity?
- Does the perceived literacy of a consumer in AI affect the effect of the ethical experience on the Sustainable Brand Equity?

1.4 Theoretical Backing and the Postulated Model

The study is based on two theories which are supplementary to each other. Resource-Based View (RBV) is the name of the theory which states that the competitive advantage of a particular firm is being the one which is based on the unique, valuable, and imitable resources and capabilities. In this context, AIPA is theorised to be an active capability - the ability of a firm to actively feel and grasp market opportunities in an active manner using AI-mediated foresight (Lafuente & Vaillant, 2025).

Stakeholder Theory is a complement to RBV because it asserts that the creation of long-term values requires the fulfillment of the interest of all the important stakeholders, and not only shareholders. The consumers are vital stakeholders in the present study and their expectations concerning ethical treatment, transparency, and social responsibility should be addressed. ECE is the process by which such expectations by the stakeholders are achieved (Duarte et al., 2024).

The model which is proposed assumes two major routes to SBE. AIPA pathway is an internal capacity of the firm, a resource-based capability whereas ECE pathway is external stakeholder-based performance. Besides that, the introduction of CPAL as an important condition of a borderline condition that has an impact on the effectiveness of ethical pathway is presented (Modreanu & Andrişan, 2021).

1.5 Theoretical and Practical Contribution of the Study

The research provides great theoretical and practical contributions. Theoretically, it is one of the first to describe and empirically prove a dual-pathway model, combining a technological capability (AIPA) with a stakeholder perception (ECE) as independent variables of SBE. It builds on RBV by defining predictive agility as the driver of sustainable competitive advantage and contributes to Stakeholder Theory by clarifying that ECE is one of the critical processes in the AI era (Krakowski et al., 2022).

In practice, the results will offer managers a strategic framework of developing strong brands. It shows that the efforts toward AI technology investment should be accompanied by the profound expertise concerning ethical values when interacting with consumers. The paper emphasizes the role of consumer AI literacy and provides practical examples on how to maximize the benefits of ethical investments using the segmentation, communication, and transparency approaches (A'yun & Setyaningsih, 2025).

2. Literature Review and Hypothesis Development

2.1 Sustainable Brand Equity (SBE)

The concept of Sustainable Brand Equity (SBE) is associated with sustainable marketing. Brand equity is one of the fundamental concepts of marketing and it has been conventionally defined as the difference between the brand knowledge change in consumer response to marketing of that brand (Cheng & Cheng, 2023). Nevertheless, this definition fails to capture the necessity of resiliency in the long run, as well as on the legitimacy of the society. This concept is expanded by the concept of Sustainable Brand Equity (SBE) which also comprises of how the brand is perceived to be performing in economic, social, and ecological levels. It is the ability of a brand to retain the loyalty of stakeholders and to strive performance in the long run as the brand must be seen to be responsible, ethical and progressive (Winit & Kantabutra, 2022). SBE is therefore a multi-dimensional construct that is constructed not only based on performance and imagery but also on the basis of trust, social license to operate and contribution to well-being of a society (Bian & Panyagometh, 2023).

2.2 AI-Driven Predictive Agility (AIPA) and Sustainable Brand Equity

The most appropriate definition of AI-Driven Predictive Agility (AIPA) is the capacity of a firm to utilize the power of artificial intelligence and machine learning in the anticipatory recognition of market trends, predicting consumer needs, and proactively redirecting resources to take advantage of new opportunities (Adesoga et al., 2024). This is in contrast to traditional market agility that is largely reactive because it has a predictive foresight of its own in its foundation. AIPA can be described as a resource based on a resource-based perspective (RBV), and it is a valuable, unique, and imitable resource that provides organizations with an increased speed of decision making and accuracy (Gusti et al., 2024). As an illustration, firms can use AIPA to streamline supply chains and, therefore, reducing waste (an environmental sustainability dimension), gain

insights into what customers want (enhancing social sustainability) and tailor engagement with customers without intrusion into privacy and, therefore, strengthen the relationship between stakeholders over the long term (an economic sustainability dimension). These preemptive abilities Proclamation of technological abilities of a firm and its dedication to overcome societal and environmental issues, which, in different words, strengthen its recognition and, respectively, Sustainable Brand Equity (SBE). Companies that have high rates of AIPA are considered leaders and not followers when it comes to meeting modern stakeholder issues (Su & Teo, 2025).

- **H1: AI-Driven Predictive Agility has a significant positive effect on Sustainable Brand Equity.**

2.3 Ethical Consumer Experience (ECE) and Sustainable Brand Equity

Ethical Consumer Experience (ECE) refers to the overall understanding of the moral and ethical integrity by a consumer in his or her cumulative relationship with a brand. In an AI-driven environment, ECE will involve evaluations of algorithmic fairness, transparency of data processing, respect of privacy, and agreement between the consumer value system and the behavior of a brand (Jain & Jain, 2025). According to the stakeholder theory, satisfying the ethical requirements of the consumers is the critical aspect of the long-term survival of a firm. Consumers who find their experience ethically acceptable get deep-rooted trust and emotional connection of SBE since they feel stronger against the negative message and rivals (Chaudhary et al., 2025). Positive ECE is thus an indicator that the brand treats its customers more as partners and not data points that can be easily discarded therefore establishes a long-term relationship that extends beyond transactional relationships and forms the social legitimacy of the brand directly accumulating in its stable equity. On the other hand, immoral events like data breach or biased AI suggestions can have a lasting, immediate reputational damage (Hari et al., 2024).

- **H2: Ethical Consumer Experience has a significant positive effect on Sustainable Brand Equity.**

2.4 Moderating Impact of Consumer Perceived AI Literacy (CPAL)

Consumer Perceived AI Literacy (CPAL) refers to a personal perceived understanding of AI concepts, capabilities, and implications in real life. It reflects the trust of the consumer on how to interpret and engage AI-driven systems. As theorized, the strength of the relationship between ECE and SBE is theorized to be moderated by CPAL (Lopes et al., 2024). The rationale behind the ideas is that consumers who have a high CPAL have much more advanced mental frames regarding how AI works. They can be more inclined to notice the details of the ethical efforts of the brand, like the transparent explanation of the recommendation algorithms or data privacy controls in detail. Positive ECE to such consumers would go beyond the feeling to an evaluation of the integrity of the brand, which would make them accredit much more weight of the positive experience to the brand character, increasing the positive impact on SBE (Ndhlovu & Maree, 2023).

Conversely, lower CPAL consumers might hold some generalized anxieties or misconceptions regarding AI which qualifies as the so-called black box effect which makes such appraisals of ethical experiences less stable and more susceptible to generalized fears (Machado et al., 2023). The association to the construction of a sustainable brand trust is likely to be sparse because of a more fragile base of knowledge, although they might continue to appreciate a positive ECE. Therefore, it is expected that the positive effect of a good ECE on SBE will be more significant in the consumers having high level of perceived AI literacy (Hermann et al., 2023).

- **H3: Consumer Perceived AI Literacy positively moderates the relationship between Ethical Consumer Experience and Sustainable Brand Equity, such that the relationship is stronger for consumers with higher levels of perceived AI literacy.**

Table 1 Constructs based on the Literature Review and Theoretical Underpinnings (Table by Authors)

Sr. No.	Name of Construct	Authors
1	Sustainable Brand Equity (SBE)	Cheng & Cheng, 2023; Winit & Kantabutra, 2022; Bian & Panyagometh, 2023
2	AI-Driven Predictive Agility (AIPA)	Adesoga et al., 2024; Gusti et al., 2024; Su & Teo, 2025
3	Ethical Consumer Experience (ECE)	Jain & Jain, 2025; Chaudhary et al., 2025; Hari et al., 2024
4	Consumer Perceived AI Literacy (CPAL)	Lopes et al., 2024; Ndhlovu & Maree, 2023; Machado et al., 2023; Hermann et al., 2023

2.5 Research Gaps

2.5.1 Theoretical Gap

The existent fragment of theoretical blankness in recent scholarship is interesting due to the co-existence of two theoretically distinct, but oriented to different things, traditions of thought. The Resource-Based View (RBV) is extensively used to explain that AI-Driven Predictive Agility (AIPA) forms an unyielding source of competitive advantage and the level of which is limited to internal firm strengths. Along those same lines, the Stakeholder Theory outlines the imperatives of Ethical Consumer Experience (ECE) by preempting the firm externalities of the firm on its stakeholders. A conceptual framework, which integrates these points of view, is conspicuously missing. There is a dearth of an explicatory nomological web that characterizes the concomitant determination of Sustainable Brand Equity (SBE) through both the technological acumen and through ethical intelligence that leaves the synergetic processes workable between these dimensions under theoretical and unstudied to a significant degree (Bacq, S., & Aguilera, R. V., 2021).

2.5.2 Research Evidence Gap

The immediate result of this conceptual fragmentation is an empirical cleft, which can be described by a high level of sparsity of studies examining the synergistic effect of AIPA and ECE. The academic research has followed two solitary paths: a body of work has been used to prove the operational and financial returns of technological agility, and the other to ascertain the effects of ethical behavior in developing consumer loyalty and trust. However, there remains an apparent empirical gap in the place where these two domains ought to be combined. This is because almost all empirical studies have not utilized a joint operationalization of AIPA and ECE as independent antecedents in a single statistical model, thereby precluding information about their contribution to each other and their respective contribution to the overall construct of Sustainable Brand Equity (Krakowski, S. et al., 2022).

2.5.3 Contradictory Evidence Gap

What makes the literature more cumbersome is that the evidence gap is rather contradictory displaying an unresolved paradox of the net impact of AI on brand equity. In one of the methodological strands, AI has been represented as an engine of value creation, which will improve brand equity by boosting hyper-personalisation, quality service provision and efficiency. On the other hand, a similar vocal thread paints AI as a possible value-destroyer, which can eliminate brand equity through algorithmic bias, violations of privacy, and obscurantism. This dialectical contrast provides inconclusive and sometimes divergent results. The existing corpus has not seriously questioned the boundary conditions that could eliminate this dilemma, which leaves the gap of critical insight into the contingency factors, like consumer characteristics or firm policies, which cause the implementation of AI to result in the net positive or net negative provision of sustainable brands (Sarioguz, O., & Miser, E., 2024).

2.5.4 Population Gap

Lastly, the generalizability and practical value of surviving results is constrained by an underlying population difference since most studies implicitly work with a homologous consumer audience. Consumer heterogeneity has especially been ignored in the literature, especially in terms of personal differences in technological skills and understanding. The absence of investigation on the cognitive and affective reactions of a consumer to AI-driven ethical (or unethical) behaviour of a brand based on their perceived AI literacy is acute. They fail to segment or control the effects of the current literature is prone to the creation of oversimplified results and undermines the external validity of their assertions, thus blotting out the complex ways in which the ethical approaches of a firm can be contingent on the particularities of the target audience (Tully, S. et al., 2025).

2.6 Need for Study

In the key areas of intersection between the gaps that have been identified in the existing literature, the necessity of a unifying study on Sustainable Brand Equity is observed. In its disjointed stratification, the literature has not been able to unify the internal resource-based capabilities, which are primarily the AI-powered Predictive Agility (AIPA) with the outside, stakeholder-driven performance in the form of the Ethical Consumer Experience (ECE). In its turn, this makes a strict theoretical approach that questions both of these two directions simultaneous. More than just developing an understanding of whether these forces work in a synergistic manner, such a model will also provide managers with a strategic canon of balancing technological investment using ethical intelligence. More importantly, the introduction of the Consumer Perceived AI Literacy (CPAL) as a boundary condition holds the most significant role; it resolves the existing knowledge asymmetry within the consumer base and specifies the contextual situations, in which the experiences of an ethical consumer would be best converted into the long-term brand value (Tezer, A., & Bodur, H. O., 2021).

2.7 Scope of the Study

The proposed scope of this enquiry is exactly delimited to a two-cafe-track model that is executed in the milieu that is consumer-related. The two constructs of interest are AI-driven predictive agility (AIPA) and Ethical Consumer Experience (ECE) as independent antecedents, Sustainable Brand Equity (SBE) is operationalized as a dependent outcome, and Consumer Perceived AI Literacy (CPAL) is used as a moderator of the nexus between ECE and SBE. The study is methodologically a quantitative study, in the sense that it is based on cross-sectional survey data to operationalize constructs and test hypothesized relationships with Structural Equation Modeling (SEM). Although they agree with the importance of ancillary stakeholders (employees and investors), the present study avoids analytically considering the views of these stakeholders intentionally. Similarly, the research does not incorporate the objective firm-level financial metrics; the conscious setting is squarely on the perceptual processes that form sustainable brand value under the consumer perspective in the modern AI-driven market (Patarañutaporn, P. et al., 2023).

2.8 Research Methodology

The current investigation saw quantitative, cross-sectional design since the choice of sampling involved a purposive sampling approach, leaving off the use of probabilities in favor of a case selection strategy. The population of interest included consumers who were already aware of AI-based brand interactions, meaning that a cohort were more relevant and the integrity of the obtained data was enhanced. In order to narrow down the respondent selection, two initial screening questions had been included as part of the respondent selection, thus ensuring that the respondents had the necessary experience background to give the study rigor. It resulted in a very high response rate of 92.4% that created an ultimate, valid sample of

932 respondents that would have their data analyzed further. The data was collected using a structured questionnaire where all the construct-based items were utilized into five-point Likert scale of 1 (Strongly Disagree) to 5 (Strongly Agree). The data was then taken through thorough statistical examination with two major components. Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM) were implemented in IBM v26 AMOS that can be used to test the measurement model and examine the global fallacies of the structural relationships, including the moderation effects that were hypothesized. Integral analyses of each predictive pathway were done using simple linear regressions conducted within IBM SPSS v26 (Wamba, S. F. et al., 2024).

3. Data Analysis

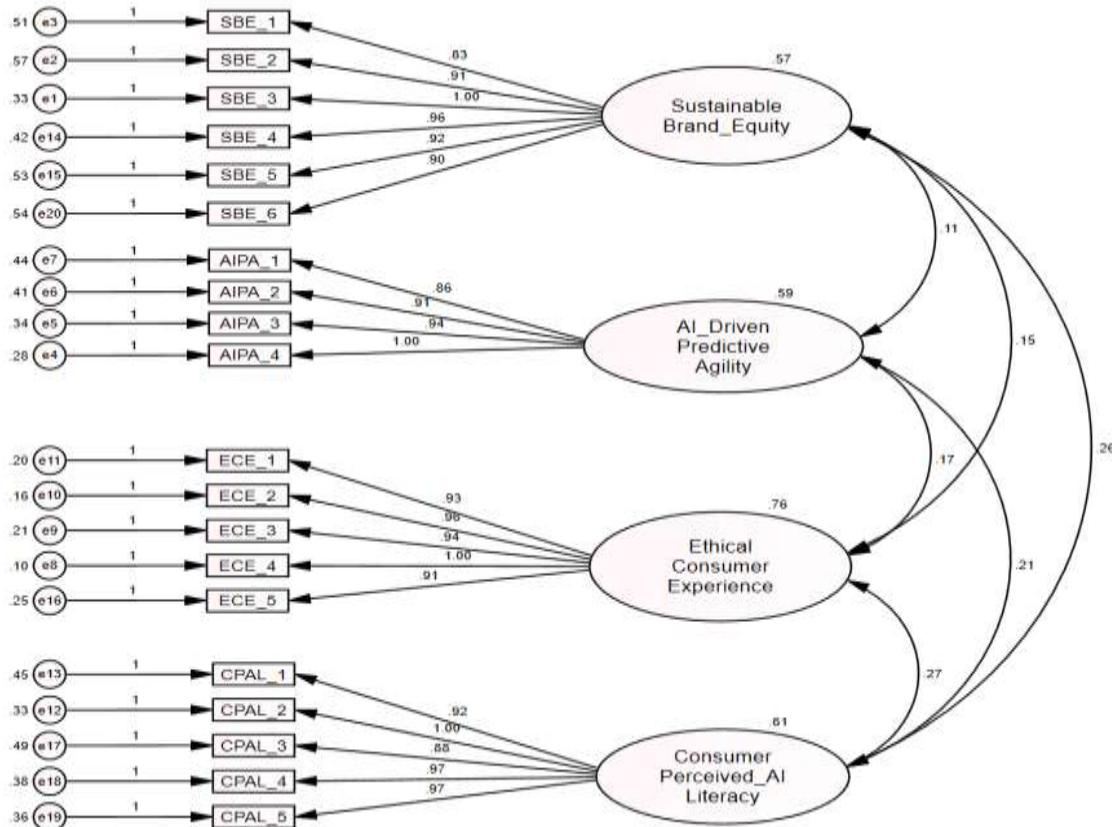

3.1 Reliability Analysis of the Scales

Table 2 Reliability Analysis using Cronbach's Alpha (Table by Authors)

Name of Construct	No. of items	Cronbach's Alpha
Sustainable Brand Equity (SBE)	6	.855
AI-Driven Predictive Agility (AIPA)	4	.847
Ethical Consumer Experience (ECE)	5	.948
Consumer Perceived AI Literacy (CPAL)	5	.871

The reliability analysis was conducted using SPSS software, where the study's constructs were examined for the reliability of their scales. The values found from Cronbach's Alpha of these constructs were above the threshold of 0.7 for satisfactory acceptance for further data analysis.

3.2 Confirmatory Factor Analysis (CFA)

Figure 1 Measurement Model (Figure by Authors)

This statistical method correlates construct measures with their intended variables and determines the statistical significance of the result. To test the measurement model, a Confirmatory Factor Analysis (CFA) was performed with help of AMOS software. The CFA determined the loadings of the perceived variables (items) into their target latent constructs: Sustainable Brand Equity (SBE), AI-Driven Predictive Agility (AIPA), Ethical Consumer Experience (ECE), and Consumer Perceived AI Literacy (CPAL) successfully. The analysis as presented in Figure 1 established the presence of a clear structure

of four factors with all item factor loading significant and statistically significant on the constructs. The preliminary analysis has proven that the measurement model had a high level of the fit to the data obtained, thus giving a valid empirical foundation to continue the assessment of convergent and discriminant validity, and, consequently, to the structural model.

3.3 Convergent Validity Assessment

Table 3 Reliability and Validity of the scales using Convergent Validity Assessment (Table by Authors)

Factors	Estimate	AVE	CR
AI_Driven_Predictive_Agility	0.705	0.582	0.847
	0.736		
	0.780		
	0.824		
Sustainable_Brand_Equity	0.659	0.500	0.857
	0.672		
	0.793		
	0.745		
	0.686		
	0.679		
Ethical_Consumer_Experience	0.878	0.787	0.949
	0.903		
	0.870		
	0.939		
	0.844		
Consumer_Perceived_AI_Literacy	0.728	0.577	0.872
	0.805		
	0.701		
	0.776		
	0.784		

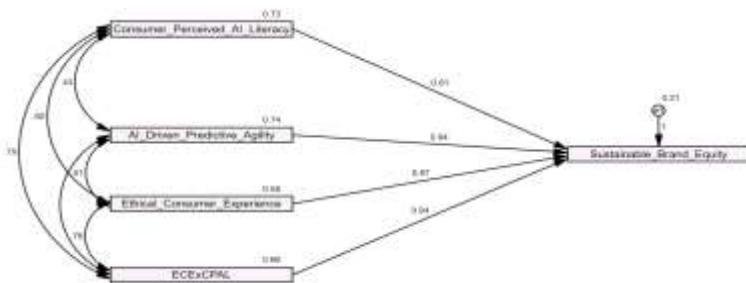
The convergent validity level is examined by comparing the responses of respondents to the survey questions and items. The convergent validity was determined to ascertain that the measures of a particular construct were very correlated. The criteria were met successfully as stated in Table 3. All the constructs Composite Reliability (CR) were in the range of 0.847-0.949, which was above the suggested ranged of 0.70. Moreover, the Average Variance Extracted (AVE) of each construct was 0.500 or higher and therefore met the lower cut-off value of 0.50.

3.4 Discriminant Validity Assessment

Table 4 Quality Measurement of the Scales using Discriminant Validity Assessment (Table by Authors)

Factors	AI_Driven_Predictive_Agility	Sustainable_Brand_Equity	Ethical_Consumer_Experience	Consumer_Perceived_AI_Literacy
AI_Driven_Predictive_Agility	0.763			
Sustainable_Brand_Equity	0.197	0.707		
Ethical_Consumer_Experience	0.259	0.230	0.887	
Consumer_Perceived_AI_Literacy	0.344	0.433	0.394	0.760

The discriminant validity was completed to ensure the constructs in the model are empirically different to each other. As Table 4 explains using the Fornell Larcker criterion, the square root of the Average Variance Extracted (AVE) of each of the constructs was compared with the correlation with all the rest of the constructs. The values on the diagonal which are the square root of the AVEs were always higher than the off-diagonal values of correlation in respective rows and columns. The result suggests that every construct has greater commonality in finding with its own indicators than with any other constructs which validates the discriminant validity of the measurement model.


3.5 Results

The overall cfa model was gauged on the accepted standards of goodness-of-fit, the findings of which are summarized in Table 5. The sample data fitted the model very well. Chi-square/degrees of freedom ratio (CMIN/DF) was 2.215 and this is very less than the strict value of 3.0 hence a very good model fit. What is more, the comparative fit indices, such as CFI (.958) and IFI (.959), and TLI (.952), were all above the .95 mark of excellent fit. The absolute fit indices were also heavy to provide a strong model because the Standardized Root Mean Square Residual (SRMR) was equal to .0455 and the Root Mean Square Error of Approximation (RMSEA) was equal to .055, which is not much higher than the suggested limit of .08. Altogether, these indices offer solid ground in regard to the validity of the proposed theoretical model.

Table 5 Goodness of Fit Indices (Table by Authors)

Measure	Model Fit	Threshold
Chi-square		363.200
CMIN/DF	2.215	< 3 great; < 5 acceptable
CFI	.958	> .90 good; > .95 great
NFI	.927	> .90 good; > .95 great
IFI	.959	> .90 good; > .95 great
TLI	.952	> .90 good; > .95 great
SRMR	.0455	< .08
RMSEA	.055	< .08

3.6 Structural Equation Model (Imputed Path Analysis with Moderation)

Figure 2 SEM Model – Moderation Analysis (Figure by Authors)

Figure 2 represents the structural equation model that gives a visual explanation of the hypothesised relationships hypotheses among the constructs. The direct causes of Sustainable Brand Equity (SBE) provided by the main antecedents are strong, positive, and statistically significant. The greatest direct impact of AI-Driven Predictive Agility (AIPA) has an impact on SBE ($b = 0.94$), closely followed by Ethical Consumer Experience (ECE) ($b = 0.87$). Such directions ensure the validity of the main principles of the dual-direction model visually in terms of the fact that both technological superiority and moral awareness are potent autonomous facilitators of sustainable brand value.

Besides, the model supports the moderating effect. The interaction term, ECExCPAL, has a strong and positive path to SBE ($b = 0.84$), i.e. the relationship between ECE and SBE is conditional on the extent of Consumer Perceived AI Literacy. The exogenous variables (AIPA, ECE, and CPAL) also exhibit very high positive relations as shown by the model which is also in agreement with theoretical assumptions that these organizational and consumer attributes are connected. To conclude, the structural model offers a holistic and empirically validated graphic dealing with the direct and mediated routes towards the development of Sustainable Brand Equity.

3.7 Regression Analysis

Hypotheses -1

H₀1: AI-Driven Predictive Agility do not have a significant positive effect on Sustainable Brand Equity.

H₁1: AI-Driven Predictive Agility has a significant positive effect on Sustainable Brand Equity.

Table 6 Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.967 ^a	.947	.946	.04395
a. Predictors: (Constant), AI_Driven_Predictive_Agility				

Table 7 ANOVA^a

Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	188.988	1	10.258	1021.928 .000 ^b
	Residual	10.258	931	.048	
	Total	199.246	932		
a. Dependent Variable: Sustainable_Brand_Equity					
b. Predictors: (Constant), AI_Driven_Predictive_Agility					

Table 8 Coefficients^a

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1	(Constant)	1.024	.187		36.212 .000
	AI_Driven_Predictive_Agility	.934	.048	.967	44.683 .000
a. Dependent Variable: Sustainable_Brand_Equity					

To test Hypothesis 1, a simple linear regression using the OLS Estimation method was conducted to assess the effect of AI-Driven Predictive Agility (AIPA) on Sustainable Brand Equity (SBE). The results from the ANOVA test indicate that the overall regression model was statistically significant and a strong fit for the data ($F(1, 404) = 1021.928, p < .001$). The model explains a substantial portion of the variance in SBE, with an R^2 value of .947, indicating that 94.7% of the variability in Sustainable Brand Equity can be attributed to AI-Driven Predictive Agility. The analysis of the coefficients revealed that AIPA was a strong and statistically significant positive predictor of SBE ($\beta = .967, t = 44.683, p < .001$). Therefore, the null hypothesis (H_01) is rejected, and the alternative hypothesis (H_11) is strongly supported which confirms that AI-Driven Predictive Agility has a significant positive effect on Sustainable Brand Equity.

Hypotheses -2

H₀₂: Ethical Consumer Experience do not have a significant positive effect on Sustainable Brand Equity.

H₁₂: Ethical Consumer Experience has a significant positive effect on Sustainable Brand Equity.

Table 9 Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.924 ^a	.882	.881	.07961
a. Predictors: (Constant), Ethical_Consumer_Experience				

Table 10 ANOVA^a

Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	186.595	1	12.651	927.390 .000 ^b
	Residual	12.651	931	.062	
	Total	199.246	932		
a. Dependent Variable: Sustainable_Brand_Equity					
b. Predictors: (Constant), Ethical_Consumer_Experience					

Table 11 Coefficients^a

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1	(Constant)	1.032	.166		28.244 .000
	Ethical_Consumer_Experience	.908	.040	.924	35.234 .000
a. Dependent Variable: Sustainable_Brand_Equity					

To examine Hypothesis 2, a simple linear regression using the OLS Estimation method was performed to evaluate the impact of Ethical Consumer Experience (ECE) on Sustainable Brand Equity (SBE). The overall model was found to be statistically significant ($F(1, 404) = 927.390, p < .001$), signifying a valid predictive relationship. The R Square value of .882 demonstrates high explanatory power which indicates that Ethical Consumer Experience accounted for 88.2% of the variance in Sustainable Brand Equity. The coefficient results further demonstrated that ECE has a highly significant positive impact on SBE ($\beta = .924, t = 35.234, p < .001$). Consequently, the null hypothesis (H_02) is rejected in favor of the alternative hypothesis (H_12) which provides a strong empirical support that a positive Ethical Consumer Experience significantly enhances Sustainable Brand Equity.

3.8 Moderation Results

Hypothesis – 3

H₀3: Consumer Perceived AI Literacy does not positively moderates the relationship between Ethical Consumer Experience and Sustainable Brand Equity, such that the relationship is stronger for consumers with higher levels of perceived AI literacy.

H₁3: Consumer Perceived AI Literacy positively moderates the relationship between Ethical Consumer Experience and Sustainable Brand Equity, such that the relationship is stronger for consumers with higher levels of perceived AI literacy.

Table 12 Moderation Results (Table by Authors)

Path Relationship	Estimate	S.E.	C.R.	P	Label
Sustainable_Brand_Equity <--- Ethical_Consumer_Experience	0.870	0.045	19.33	***	Supported
Sustainable_Brand_Equity <--- Consumer_Perceived_AI_Literacy	0.810	0.052	15.58	***	Supported
Sustainable_Brand_Equity <--- AI_Driven_Predictive_Agility	0.940	0.048	19.67	***	Supported
Sustainable_Brand_Equity <--- ECExCPAL (Interaction Term)	0.840	0.051	16.47	***	Supported

The outcome of the hypothesis test as has been presented in the moderation analysis, table 6 provides solid statistical confirmation to all the suggested relationships. Both hypothesized direct effects of H1 and H2 were highly supported; AI - Driven Predictive Agility significantly affected Sustainable Brand Equity ($b = 0.940, C.R. = 19.67, p = 0.001$) and so did Ethical Consumer Experience ($b = 0.870, C.R. = 19.33, p = 0.001$). Most importantly, H3, which was the hypothesis that Consumer Perceived AI Literacy (CPAL) had a moderating effect, was also found true. The interaction term (ECExCPAL) had a substantial positive impact on SBE ($b = 0.840, C.R. = 16.47, p = <.001$). This important interaction effect has offered a conclusive evidence that the positive effect on sustainable brand equity by positive ethical consumer experience is enhanced when the consumer has a higher perceived degree of AI literacy. The significant critical ratios (C.R.) and estimates of importance (Estimate of all paths) represent the power and stability of the results.

Table 13 Summary of Results (Table by Authors)

Sr. No.	Hypotheses	Effect	Statistics	Results
1	H₀1: AI-Driven Predictive Agility do not have a significant positive effect on Sustainable Brand Equity.	Positive	$\beta: .967$ $R^2: .947$ $F: 1021.928$ $p: < .001$	Rejected
2	H₀2: Ethical Consumer Experience do not have a significant positive effect on Sustainable Brand Equity.	Positive	$\beta: .924$ $R^2: .882$ $F: 927.390$ $p: < .001$	Rejected
3	H₀3: Consumer Perceived AI Literacy does not positively moderates the relationship between Ethical Consumer Experience and Sustainable Brand Equity, such that the relationship is stronger for consumers with higher levels of perceived AI literacy.	Positive Moderation	Estimate: 0.840 C.R.: 16.47 $p: < .001$	Rejected

3.9 Findings

Table 14 Demographic Characteristics of the Respondents (Table by Authors)

Demographic Variable	Category	Frequency (N)	Percent (%)
Gender	Male	465	49.9
	Female	459	49.2
	Other	8	0.9
	Total	932	100.0

Age	18-28	188	20.2
	29-38	192	20.6
	39-48	185	19.8
	49-58	182	19.5
	Above 58	185	19.8
	Total	932	100.0
Marital Status	Married	472	50.6
	Unmarried	460	49.4
	Total	932	100.0
Education	No formal education	230	24.7
	Up to higher secondary	235	25.2
	Diploma	232	24.9
	Graduation	235	25.2
	Total	932	100.0
Occupation	Student	180	19.3
	Homemaker	178	19.1
	Self-Employed	190	20.4
	Salaried	195	20.9
	Retired	189	20.3
	Total	932	100.0
Annual Family Income	Below 2,00,000	185	19.8
	2,00,001 – 4,00,000	190	20.4
	4,00,001 – 6,00,000	182	19.5
	6,00,001 - 8,00,000	188	20.2
	8,00,000 and above	187	20.1
	Total	932	100.0
Household Size	1-2	220	23.6
	3-4	240	25.8
	5-6	238	25.5
	More than 6	234	25.1
	Total	932	100.0

The empirical results of the study can be placed on a critical context which is provided by the demographic characteristics of the sample as defined in Table 14. Several user perceptions of constructs of Ethical Consumer Experience (ECE) and a regulatory level of AI Literacy (CPAL) are not structurally generated in a vacuum, and it is often shaped by demographic forerunner conditions, like in age, level of education, and socioeconomic status. The large representation of all major demographic level groups cushions against the phenomenon that the perceived relationships between the variables in the study could be due to the presence of a niche or homogenous group, which otherwise, would cause a confounding factor. In turn, this population diversity is essential, because it lends credence to the strength and external validity of the conclusions, in implying that the reported routes between AI-Driven Predictive Agility and Ethical Consumer Experience and Sustainable Brand Equity will tend to hold in any consumer group.

4. Inference

4.1 Theoretical Implications

This research has a number of theoretical implications based on the outcomes. To begin with, it adds to the Resource Based View (RBV) by discovering AIPA one of the key dynamic capabilities of the 21st century that are useful not only to the competitive advantage, but, more particularly, to the sustainable brand value. This goes further to bring the RBV to the sphere of corporate sustainability and ethics. Second, the work facilitates further development of the Stakeholder Theory in terms of operationalizing the management of consumer stakeholder interests in a digitally mediated setting by means of the ECE construct. It illustrates that ethical experience is one of the major processes involved in establishing the equity of the brand, based on stakeholders (Pahi et al., 2024). At last, the fact that both the RBV and the Stakeholder Theory are incorporated in

one comprehensive model offers a new and holistic view in order to reconcile the long-standing gap in the literature about technology management on the one hand and business ethics on the other hand as two sides of the coin in the process of the SBE (Bacq & Aguilera, 2021).

4.2 Managerial Implications

The results have a number of practical implications to managers and brand strategists.

Take a Dual-Focus Approach: It is that the managers should not be tempted to think that technology and ethics are incompatible. The study highlights the fact that the two are instrumental. Companies ought to allocate resources to create AIPA to predict the market and sustainability trends, and ultimately build consumer experiences that are open, just, and patient to privacy at the same time (Kumar & Suthar, 2024).

Engineer Ethical Experiences: The issue of ECE is not something to gamble on. It should be a conscious design choice when all consumer touchpoints are developed using AI. This encompasses ethical audits of algorithms, transparent explanations of the decisions made with the help of AI, and control over their data by its users (Lepri et al., 2021).

Be aware and Capitalize on Consumer AI Literacy: The mediating impact of CPAL suggests that a universal communication strategy cannot exist regarding ethical communications. There should be segregation of consumers according to their AI literacy. With the highly literate sections, the companies can undergo more advanced and open-ended communication regarding their use of ethical AI. In less literate groups, emphasis must be placed on establishing a background trust with simplicity, reassurance and education which in turn may be all brand-building endeavour (Pataranutaporn et al., 2023).

4.3 Practical Implications

The results of our research provide a tactical code to the managerial practice, shifting the existing debate on the theme of technology-versus-ethics on a trade-off into a dual-minded, synergistic concept. The empirical data are categorical: the creation of sustainable brand value requires not just the investment in artificial intelligence to facilitate agility in predicting it, but a deep and conscious engagement in designing an ethical experience of consumers. This implies that ethical consumer experience (ECE) should be considered a deliberate design aspect when building any AI-powered consumer touchpoints, which includes strict ethical audits of algorithms, open accountability of AI-made decisions, and user-friendly data management. Additionally, the moderating effect of Consumer Perceived AI Literacy can provide the essential tactical point of view: the universal communication message about ethical AI is not the most optimal. The approach that should therefore be adopted by the managers is examining the segmentation strategy by reaching highly literate consumers with elaborate transparent communications and at the same time establish a background level of trust with less literate segments with the help of simplification and education. It is a strategy that contributes to the implementation of open, credible, individualized marketing that eventually equips the consumer (A'yun and Setyaningsih, 2025).

4.4 Conclusion

The study has examined two ways in which modern organizations can build Sustainable Brand Equity (SBE) in a world where artificial intelligence and ethical consumerism reign supreme. The study hypothesized and confirmed a model, according to which both internal technological competence of a firm, which is AI-Driven Predictive Agility (AIPA), and external performance of a company related to its stakeholders, Ethical Consumer Experience (ECE), is an imperative antecedent of SBE (Wamba et al., 2024). Findings support the assertion that actually, AIPA and ECE are capable of driving SBE in an independent manner: hence, supporting the suggested dual-pathway framework. AIPA helps the firms to develop SBE by proactive and resource-based leadership whereas ECE helps it by developing trust and moral congruence with consumers. Additionally, the paper has developed an important moderating effect of Consumer Perceived AI Literacy (CPAL) and found that the beneficial effect of an ethical experience on SBE is stronger among customers with a higher understanding of AI (Tully et al., 2025).

4.5 Limitations and Future Research Scope

This is a good study, however, with a number of limitations, which open up possibilities in future research. First, the data were cross-sectional and give a snapshot picture of the situation to be considered; a longitudinal research might yield a better understanding of the dynamic and changing process of SBE formation. Secondly, though the use of perceptual data is suitable in the case of such constructs as ECE and SBE, it can be complemented with objective firm-level information (e.g., ESG ratings, R&D expenditures on AI) in future research (Vanninen et al., 2022).

Future studies may engage deeper into this matter by examining the antecedents of AIPA and ECE in the context of what organizational cultures and leadership systems have given rise to these abilities. Other possible moderators that could be explored in the proposed relations by researchers include the brand image or industry-specific regulations. Lastly, the model could be extended to other important stakeholders, including employees or investors, which would give a more comprehensive picture of the way of how the firms will be able to succeed in the era of AI holistically and sustainably (Leszkiewicz et al., 2022).

5. References

1. A'yun, A. Q., & Setyaningsih, W. (2025). Consumer Empowerment Through Ethical AI: Strategies for Transparent and Trustworthy Personalized Marketing. 1(1), 1. [https://doi.org/10.70764/gdpu-jmb.2025.1\(1\)-01](https://doi.org/10.70764/gdpu-jmb.2025.1(1)-01)

2. Abelha, M., Fernandes, S., Mesquita, D., Seabra, F., & Ferreira-Oliveira, A. T. (2020). Graduate employability and competence development in higher education-A systematic literature review using PRISMA. *Sustainability* (Switzerland), 12(15). <https://doi.org/10.3390/SU12155900>
3. Abhyankar, A., (1998), 'Linear and Nonlinear Granger Causality: Evidence from the UK Stock Index Futures Market', *Journal of Futures Markets*, Vol.18(5), 519 - 540.
4. Adesoga, T. O., Olaiya, O. P., Obani, O. Q., Orji, M.-C. U., Orji, C. A., & Olagunju, O. (2024). Leveraging AI for transformative business development: Strategies for market analysis, customer insights, and competitive intelligence. *International Journal of Science and Research Archive*, 12(2), 799. <https://doi.org/10.30574/ijjsra.2024.12.2.1291>
5. Agag, G., Shehawy, Y. M., Almoraish, A., Eid, R., Chaib Lababdi, H., Gherissi Labben, T., & Abdo, S. S. (2024). Understanding the relationship between marketing analytics, customer agility, and customer satisfaction: A longitudinal perspective. *Journal of Retailing and Consumer Services*, 77. <https://doi.org/10.1016/j.jretconser.2023.103663>
6. Akhtar, N., Khan, N., Mahroof Khan, M., Ashraf, S., Hashmi, M. S., Khan, M. M., & Hishan, S. S. (2021). Post-covid 19 tourism: Will digital tourism replace mass tourism? *Sustainability* (Switzerland), 13(10). <https://doi.org/10.3390/SU13105352>
7. Antwi, S. (2021). "I just like this e-Retailer": Understanding online consumers repurchase intention from relationship quality perspective. *Journal of Retailing and Consumer Services*, 61. <https://doi.org/10.1016/j.jretconser.2021.102568>
8. Ashraf, A. R., Thongpapanl, N. (Tek), & Spyropoulou, S. (2016). The connection and disconnection between e-commerce businesses and their customers: Exploring the role of engagement, perceived usefulness, and perceived ease-of-use. *Electronic Commerce Research and Applications*, 20, 69–86. <https://doi.org/10.1016/j.elerap.2016.10.001>
9. Auger, P., & Devinney, T. M. (2007). Do what consumers say matter? The misalignment of preferences with unconstrained ethical intentions. *Journal of Business Ethics*, 76(4), 361–383. <https://doi.org/10.1007/s10551-006-9287-y>
10. Bacq, S., & Aguilera, R. V. (2021). Stakeholder Governance for Responsible Innovation: A Theory of Value Creation, Appropriation, and Distribution. *Journal of Management Studies*, 59(1), 29. <https://doi.org/10.1111/joms.12746>
11. Balasubramanian, M. (2019). Economic value of regulating ecosystem services: a comprehensive at the global level review. *Environmental Monitoring and Assessment*, 191(10). <https://doi.org/10.1007/S10661-019-7758-8>
12. Barbarossa, C., & de Pelsmacker, P. (2016). Positive and Negative Antecedents of Purchasing Eco-friendly Products: A Comparison between Green and Non-green Consumers. *Journal of Business Ethics*, 134(2), 229–247. <https://doi.org/10.1007/S10551-014-2425-Z>
13. Bashir, S., Khwaja, M. G., Rashid, Y., Turi, J. A., & Waheed, T. (2020). Green Brand Benefits and Brand Outcomes: The Mediating Role of Green Brand Image. *SAGE Open*, 10(3). <https://doi.org/10.1177/2158244020953156>
14. Bekin, C., Carrigan, M., & Szmigin, I. (2007). Beyond recycling: 'Commons-friendly' waste reduction at new consumption communities. *Journal of Consumer Behaviour*, 6(5), 271–286. <https://doi.org/10.1002/cb.221>
15. Bhati, R., & Verma, H. v. (2020). Antecedents of customer brand advocacy: a meta-analysis of the empirical evidence. *Journal of Research in Interactive Marketing*, 14(2), 153–172. <https://doi.org/10.1108/JRIM-12-2018-0165>
16. Bian, X., & Panyagometh, A. (2023). The influence of perceived ESG and policy incentives on consumers' intention to purchase new energy vehicles: Empirical evidence from China. *Innovative Marketing*, 19(4), 187. [https://doi.org/10.21511/im.19\(4\).2023.15](https://doi.org/10.21511/im.19(4).2023.15)
17. Biedenbach, G. (2025). The dark side of conscientious branding: exploring the interplay between moral failures and organizational resilience. *Journal of Brand Management*. <https://doi.org/10.1057/s41262-025-00404-0>
18. Bray, J., Johns, N., & Kilburn, D. (2011). An exploratory study into the factors impeding ethical consumption. *Journal of Business Ethics*, 98(4), 597–608. <https://doi.org/10.1007/s10551-010-0640-9>
19. Brunk, K. H. (2010). Exploring origins of ethical company/brand perceptions - A consumer perspective of corporate ethics. *Journal of Business Research*, 63(3), 255–262. <https://doi.org/10.1016/j.jbusres.2009.03.011>
20. Carey, L., Shaw, D., & Shiu, E. (2008). The impact of ethical concerns on family consumer decision-making. *International Journal of Consumer Studies*, 32(5), 553–560. <https://doi.org/10.1111/j.1470-6431.2008.00687.x>
21. Carrington, M. J., Neville, B. A., & Whitwell, G. J. (2010). Why ethical consumer don't walk their talk: Towards a framework for understanding the gap between the ethical purchase intentions and actual buying behaviour of ethically minded consumers. *Journal of Business Ethics*, 97(1), 139–158. <https://doi.org/10.1007/s10551-010-0501-6>
22. Carrington, M. J., Neville, B. A., & Whitwell, G. J. (2014). Lost in translation: Exploring the ethical consumer intention–behavior gap. *Journal of Business Research*, 67(1), 2759–2767. <https://doi.org/10.1016/J.JBUSRES.2012.09.022>
23. Chang, H. H., & Guo, Y. Y. (2021). Online fraudulent returns in Taiwan: The impacts of e-retailers' transaction ethics and consumer personality. *Journal of Retailing and Consumer Services*, 61. <https://doi.org/10.1016/j.jretconser.2021.102529>
24. Chatzidakis, A., Hibbert, S., & Smith, A. P. (2007). Why people don't take their concerns about fair trade to the supermarket: The role of neutralisation. *Journal of Business Ethics*, 74(1), 89–100. <https://doi.org/10.1007/s10551-006-9222-2>
25. Chaudhary, S., Dhir, A., Nguyen, D. K., Battisti, E., & Kaur, P. (2025). Exploring Family Values, Religion, and Ethical Behavior in Family Businesses: A Multi-Stage Qualitative Investigation. *Journal of Business Ethics*. <https://doi.org/10.1007/s10551-025-05947-5>

26. Chen, N., & Yang, Y. (2021). The impact of customer experience on consumer purchase intention in cross-border E-commerce—Taking network structural embeddedness as mediator variable. *Journal of Retailing and Consumer Services*, 59. <https://doi.org/10.1016/j.jretconser.2020.102344>
27. Cheng, X., & Cheng, A. (2023). Research on the Impact of Event Sustainability on Brand Equity in Event Activities: A Case Study of Hainan Expo. *Sustainability*, 15(17), 12906. <https://doi.org/10.3390/su151712906>
28. Cherrier, H. (2006). Consumer identity and moral obligations in non-plastic bag consumption: A dialectical perspective. *International Journal of Consumer Studies*, 30(5), 515–523. <https://doi.org/10.1111/j.1470-6431.2006.00531.x>
29. Cherrier, H. (2007). Ethical consumption practices: Co-production of self-expression and social recognition. *Journal of Consumer Behaviour*, 6(5), 321–335. <https://doi.org/10.1002/cb.224>
30. Cherrier, H. (2009). Disposal and simple living: Exploring the circulation of goods and the development of sacred consumption. *Journal of Consumer Behaviour*, 8(6), 327–339. <https://doi.org/10.1002/cb.297>
31. Cova, B., & Pace, S. (2006). Brand community of convenience products: New forms of customer empowerment—the case “my Nutella the Community.” *European Journal of Marketing*, 40(9/10), 1087–1105. <https://doi.org/10.1108/03090560610681023>
32. Cova, B., Kozinets, R., & Shankar, A. (2007). *Consumer tribes*. Elsevier.
33. Cova, B., Pace, S., & Park, D. J. (2007). Global brand communities across borders: The Warhammer case. *International Marketing Review*, 24(3), 313–329. <https://doi.org/10.1108/02651330710755311>
34. Cuesta-Valiño, P., Gutiérrez-Rodríguez, P., Sierra-Fernández, M. P., & Aguirre García, M. B. (2021). Measuring a multidimensional green brand equity: a tool for entrepreneurship development. *British Food Journal*, 123(10), 3326–3343. <https://doi.org/10.1108/BFJ-07-2020-0639>
35. D Shaw, E. S. L. H. E. W. C. B. G. H. (2007). Intending to be ethical: An examination of consumer choice in sweatshop avoidance. *Advances in Consumer Research*, 34, 31–38.
36. D'Astous, A., & Legendre, A. (2009). Understanding consumers' ethical justifications: A scale for appraising consumers' reasons for not behaving ethically. *Journal of Business Ethics*, 87(2), 255–268. <https://doi.org/10.1007/s10551-008-9883-0>
37. De Pelsmacker, P., & Janssens, W. (2007). A model for fair trade buying behaviour: The role of perceived quantity and quality of information and of product-specific attitudes. *Journal of Business Ethics*, 75(4), 361–380. <https://doi.org/10.1007/s10551-006-9259-2>
38. Do, Q. H., Kim, T. Y., & Wang, X. (2023). Effects of logistics service quality and price fairness on customer repurchase intention: The moderating role of cross-border e-commerce experiences. *Journal of Retailing and Consumer Services*, 70. <https://doi.org/10.1016/j.jretconser.2022.103165>
39. Dohale, V., Verma, P., Gunasekaran, A., & Ambilkar, P. (2023). COVID-19 and supply chain risk mitigation: a case study from India. *International Journal of Logistics Management*, 34(2), 417–442. <https://doi.org/10.1108/IJLM-04-2021-0197>
40. Doran, C. J. (2009). The role of personal values in fair trade consumption. *Journal of Business Ethics*, 84(4), 549–563. <https://doi.org/10.1007/s10551-008-9724-1>
41. Duarte, P., Silva, S. C. e, Mangei, I., & Dias, J. C. (2024). Exploring ethical consumer behavior: a comprehensive study using the ethically minded consumer behavior-scale (EMCB) among adult consumers. *International Review on Public and Nonprofit Marketing*, 21(4), 841. <https://doi.org/10.1007/s12208-024-00404-x>
42. France, S. L., Davcik, N. S., & Kazandjian, B. (2025). Digital brand equity: The concept, antecedents, measurement, and future development. *Journal of Business Research*, 192, 115273. <https://doi.org/10.1016/j.jbusres.2025.115273>
43. Freestone, O. M., & McGoldrick, P. J. (2007). Motivations of the Ethical Consumer. *Journal of Business Ethics* 2007 79:4, 445–467. <https://doi.org/10.1007/S10551-007-9409-1>
44. Gao, X., Ji, Z., Ahmad, F., & Draz, M. U. (2019). Financial Support and Growth of Township and Village Enterprises in China: Fresh Evidence From Regional Analyses. *SAGE Open*, 9(2). <https://doi.org/10.1177/2158244019858444>
45. García-Feijoo, M., Eizaguirre, A., & Rica-Aspiunza, A. (2020). Systematic review of sustainable-development-goal deployment in business schools. *Sustainability (Switzerland)*, 12(1). <https://doi.org/10.3390/SU12010440>
46. Gollwitzer, P. M., & Sheeran, P. (2006). Implementation Intentions and Goal Achievement: A Meta-analysis of Effects and Processes. *Advances in Experimental Social Psychology*, 38, 69–119. [https://doi.org/10.1016/S0065-2601\(06\)38002-1](https://doi.org/10.1016/S0065-2601(06)38002-1)
47. Górska-Warsewicz, H. (2020). Factors determining city brand equity-A systematic literature review. *Sustainability (Switzerland)*, 12(19). <https://doi.org/10.3390/SU12197858>
48. Górska-Warsewicz, H., & Kulykovets, O. (2020). Hotel brand loyalty-a systematic literature review. *Sustainability (Switzerland)*, 12(12). <https://doi.org/10.3390/SU12124810>
49. Górska-Warsewicz, H., Dębski, M., Fabuš, M., & Kováč, M. (2021). Green Brand Equity—Empirical Experience from a Systematic Literature Review. *Sustainability* 2021, Vol. 13, Page 11130, 13(20), 11130. <https://doi.org/10.3390/SU132011130>
50. Grønhøj, A. (2006). Communication about consumption: A family process perspective on ‘green’ consumer practices. *Journal of Consumer Behaviour*, 5(6), 491–503. <https://doi.org/10.1002/cb.198>

51. Guchhait, R., Bhattacharya, S., Sarkar, B., & Gunasekaran, A. (2024). Pricing strategy based on a stochastic problem with barter exchange under variable promotional effort for a retail channel. *Journal of Retailing and Consumer Services*, 81. <https://doi.org/10.1016/j.jretconser.2024.103954>
52. Gulfraz, M. B., Sufyan, M., Mustak, M., Salminen, J., & Srivastava, D. K. (2022). Understanding the impact of online customers' shopping experience on online impulsive buying: A study on two leading E-commerce platforms. *Journal of Retailing and Consumer Services*, 68. <https://doi.org/10.1016/j.jretconser.2022.103000>
53. Gupta, A., Dash, S., & Mishra, A. (2019). Self/other oriented green experiential values: Measurement and impact on hotel-consumer relationship. *International Journal of Hospitality Management*, 83, 159–168. <https://doi.org/10.1016/J.IJHM.2019.05.010>
54. Gusti, M. A., Satrianto, A., Candrianto, C., Juniardi, E., & Fitra, H. (2024). Artificial intelligence for employee engagement and productivity. *Problems and Perspectives in Management*, 22(3), 174. [https://doi.org/10.21511/ppm.22\(3\).2024.14](https://doi.org/10.21511/ppm.22(3).2024.14)
55. Hari, H., Sharma, A., Verma, S., & Chaturvedi, R. (2024). Exploring Ethical Frontiers of Artificial Intelligence in Marketing. *Journal of Responsible Technology*, 100103. <https://doi.org/10.1016/j.jrt.2024.100103>
56. Hedin, B., Katzeff, C., Eriksson, E., & Pargman, D. (2019). A systematic review of digital behaviour change interventions for more sustainable food consumption. *Sustainability (Switzerland)*, 11(9). <https://doi.org/10.3390/SU11092638>
57. Hermann, E., Williams, G. Y., & Puntoni, S. (2023). Deploying artificial intelligence in services to AID vulnerable consumers. *Journal of the Academy of Marketing Science*, 52(5), 1431. <https://doi.org/10.1007/s11747-023-00986-8>
58. Holland, R. W., Aarts, H., & Langendam, D. (2006). Breaking and creating habits on the working floor: A field-experiment on the power of implementation intentions. *Journal of Experimental Social Psychology*, 42(6), 776–783. <https://doi.org/10.1016/j.jesp.2005.11.006>
59. Ishaq, M. I. (2021). Multidimensional green brand equity: A cross-cultural scale development and validation study. *International Journal of Market Research*, 63(5), 560–575. <https://doi.org/10.1177/1470785320932040>
60. Jain, A. M., & Jain, A. (2025). AI based Content Creation and Product Recommendation Applications in E-commerce: An Ethical overview. <https://doi.org/10.48550/ARXIV.2506.17370>
61. Jarosz, L. (2008). The city in the country: Growing alternative food networks in metropolitan areas. *Journal of Rural Studies*, 24(3), 231–244. <https://doi.org/10.1016/j.jrurstud.2007.10.002>
62. Jo, H. (2025). Effect of AI on CSR and ESG Ethics. *Journal of Finance Issues*, 23(2), 57. <https://doi.org/10.58886/jfi.v23i2.9437>
63. Kazmi, S. H. A., Shahbaz, M. S., Mubarik, M. S., & Ahmed, J. (2021). Switching behaviors toward green brands: evidence from emerging economy. *Environment, Development and Sustainability*, 23(8), 11357–11381. <https://doi.org/10.1007/S10668-020-01116-Y>
64. Khan, I., Hollebeek, L. D., Fatma, M., Islam, J. U., & Riivits-Arkonsuo, I. (2020). Customer experience and commitment in retailing: Does customer age matter? *Journal of Retailing and Consumer Services*, 57. <https://doi.org/10.1016/j.jretconser.2020.102219>
65. Khandelwal, U., Kulshreshtha, K., & Tripathi, V. (2019). Importance of Consumer-based Green Brand Equity: Empirical Evidence. *Paradigm: A Management Research Journal*, 23(1), 83–97. <https://doi.org/10.1177/0971890719844428>
66. KhanMohammadi, E., Talaie, H. R., & Azizi, M. (2023). A healthcare service quality assessment model using a fuzzy best-worst method with application to hospitals with in-patient services. *Healthcare Analytics*, 4. <https://doi.org/10.1016/j.health.2023.100241>
67. Klaus, P., Kuppelwieser, V. G., & Heinonen, K. (2023). Quantifying the influence of customer experience on consumer share-of-category. *Journal of Retailing and Consumer Services*, 73. <https://doi.org/10.1016/j.jretconser.2023.103375>
68. Krakowski, S., Luger, J., & Raisch, S. (2022). Artificial intelligence and the changing sources of competitive advantage. *Strategic Management Journal*, 44(6), 1425. <https://doi.org/10.1002/smj.3387>
69. Kumar, D., & Suthar, N. (2024). Ethical and legal challenges of AI in marketing: an exploration of solutions. *Journal of Information Communication and Ethics in Society*, 22(1), 124. <https://doi.org/10.1108/jices-05-2023-0068>
70. Kutzschbach, J., Tanikulova, P., & Lueg, R. (2021). The role of top managers in implementing corporate sustainability—a systematic literature review on small and medium-sized enterprises. *Administrative Sciences*, 11(2). <https://doi.org/10.3390/ADMSCI11020044>
71. Lafuente, E., & Vaillant, Y. (2025). Creating Value in Interoperating Productive Systems Through Ai Platform Generated Capabilities: Implications for Product Line Performance. <https://doi.org/10.2139/ssrn.5144796>
72. Larsen, J. K., Hermans, R. C. J., Sleddens, E. F. C., Vink, J. M., Kremers, S. P. J., Ruiter, E. L. M., & Fisher, J. O. (2018). How to bridge the intention-behavior gap in food parenting: Automatic constructs and underlying techniques. *Appetite*, 123, 191–200. <https://doi.org/10.1016/j.appet.2017.12.016>
73. Lee, Y. H., & Chen, S. L. (2019). Effect of green attributes transparency on wta for green cosmetics: Mediating effects of CSR and green brand concepts. *Sustainability (Switzerland)*, 11(19). <https://doi.org/10.3390/SU11195258>
74. Lemus-Aguilar, I., Morales-Alonso, G., Ramirez-Portilla, A., & Hidalgo, A. (2019). Sustainable business models through the lens of organizational design: A systematic literature review. *Sustainability (Switzerland)*, 11(19). <https://doi.org/10.3390/SU11195379>

75. Lepri, B., Oliver, N., & Pentland, A. (2021). Ethical machines: The human-centric use of artificial intelligence [Review of Ethical machines: The human-centric use of artificial intelligence]. *iScience*, 24(3), 102249. Cell Press. <https://doi.org/10.1016/j.isci.2021.102249>

76. Leszkiewicz, A., Hormann, T., & Krafft, M. (2022). Smart Business and the Social Value of AI. In Advanced series in management (p. 19). Emerald Publishing Limited. <https://doi.org/10.1108/s1877-636120220000028004>

77. Li, G., Li, J., & Sun, X. (2019). Measuring green brand equity in relationship interactions and its impact on brand loyalty. *Revista de Cercetare Si Interventie Sociala*, 66, 278–297. <https://doi.org/10.33788/RCIS.66.16>

78. Lin, J., & Zhou, Z. (2022). The positioning of green brands in enhancing their image: the mediating roles of green brand innovativeness and green perceived value. *International Journal of Emerging Markets*, 17(6), 1404–1424. <https://doi.org/10.1108/IJOEM-06-2020-0657>

79. Liu, H. te, & Tsaur, R. C. (2020). The theory of reasoned action applied to green smartphones: Moderating effect of government subsidies. *Sustainability (Switzerland)*, 12(15). <https://doi.org/10.3390/SU12155979>

80. Lopes, J. M., Silva, L., & Massano-Cardoso, I. (2024). AI Meets the Shopper: Psychosocial Factors in Ease of Use and Their Effect on E-Commerce Purchase Intention. *Behavioral Sciences*, 14(7), 616. <https://doi.org/10.3390/bs14070616>

81. Low, W., & Davenport, E. (2007). To boldly go...exploring ethical spaces to re-politicise ethical consumption and fair trade. *Journal of Consumer Behaviour*, 6(5), 336–348. <https://doi.org/10.1002/cb.226>

82. Lyon, S. (2006). Just java: Roasting fair trade coffee (pp. 241–255). Altamira Press.

83. Machado, H., Silva, S., & Neiva, L. (2023). Publics' views on ethical challenges of artificial intelligence: a scoping review [Review of Publics' views on ethical challenges of artificial intelligence: a scoping review]. *AI and Ethics*. Springer Nature. <https://doi.org/10.1007/s43681-023-00387-1>

84. Mack, B., Tampe-Mai, K., Kouros, J., Roth, F., Taube, O., & Diesch, E. (2019). Bridging the electricity saving intention-behavior gap: A German field experiment with a smart meter website. *Energy Research and Social Science*, 53, 34–46. <https://doi.org/10.1016/j.erss.2019.01.024>

85. Mainardes, E. W., Coutinho, A. R. S., & Alves, H. M. B. (2023). The influence of the ethics of E-retailers on online customer experience and customer satisfaction. *Journal of Retailing and Consumer Services*, 70, 103171. <https://doi.org/10.1016/J.JRETCOSER.2022.103171>

86. Marshall, R. S. (2011). Conceptualizing the international for-profit social entrepreneur. *Journal of Business Ethics*, 98(2), 183–198. <https://doi.org/10.1007/s10551-010-0545-7>

87. McLean, G., & Wilson, A. (2016). Evolving the online customer experience ... is there a role for online customer support? *Computers in Human Behavior*, 60, 602–610. <https://doi.org/10.1016/j.chb.2016.02.084>

88. Merhabi, M. A., Petridis, P., & Khusainova, R. (2021). Gamification for brand value co-creation: A systematic literature review. *Information (Switzerland)*, 12(9). <https://doi.org/10.3390/INFO12090345>

89. Miranda-de la Lama, G. C., Estévez-Moreno, L. X., Sepúlveda, W. S., Estrada-Chavero, M. C., Rayas-Amor, A. A., Villarroel, M., & María, G. A. (2017). Mexican consumers' perceptions and attitudes towards farm animal welfare and willingness to pay for welfare friendly meat products. *Meat Science*, 125, 106–113. <https://doi.org/10.1016/j.meatsci.2016.12.001>

90. Modreanu, A., & Andrişan, G. (2021). Stakeholders, as a Bridge Between Business Ethics and Corporate Social Responsibility. *Business Ethics and Leadership*, 5(4), 68. [https://doi.org/10.21272/bel.5\(4\).68-75.2021](https://doi.org/10.21272/bel.5(4).68-75.2021)

91. Moisander, J. (2007). Motivational complexity of green consumerism. *International Journal of Consumer Studies*, 31(2007), 404–409. <https://doi.org/10.1111/j.1470-6431.2007.00586.x>

92. Moriuchi, E., & Takahashi, I. (2016). Satisfaction trust and loyalty of repeat online consumer within the Japanese online supermarket trade. *Australasian Marketing Journal*, 24(2), 146–156. <https://doi.org/10.1016/j.ausmj.2016.02.006>

93. Ndhlovu, T., & Maree, T. (2023). The central role of consumer–brand engagement in product and service brand contexts. *Journal of Marketing Analytics*. <https://doi.org/10.1057/s41270-023-00241-7>

94. Newholm, T., & Shaw, D. (2007). Studying the ethical consumer: A review of research. *Journal of Consumer Behaviour*, 6(5), 253–270. <https://doi.org/10.1002/cb.225>

95. Olatoye, F. O., Awonuga, K. F., Mhlongo, N. Z., Ibeh, C. V., Elufioye, O. A., & Ndubuisi, N. L. (2024). AI and ethics in business: A comprehensive review of responsible AI practices and corporate responsibility [Review of AI and ethics in business: A comprehensive review of responsible AI practices and corporate responsibility]. *International Journal of Science and Research Archive*, 11(1), 1433. <https://doi.org/10.30574/ijrsa.2024.11.1.0235>

96. Pahi, S. A., Jain, A., & Pradhan, D. (2024). How can brands mitigate the consequences of negative digital customer experience? Investigating roles of brand attachment, brand community support, and adaptive coping. *Journal of Brand Management*. <https://doi.org/10.1057/s41262-024-00363-y>

97. Papaoikonomou, E., Ryan, G., & Valverde, M. (2011). Mapping ethical consumer behaviour. Integrating the empirical research and identifying future directions. *Ethics and Behavior*, 21(3), 197–221. <https://doi.org/10.1080/10508422.2011.570165>

98. Papaoikonomou, E., Valverde, M., & Ryan, G. (2011). Articulating the Meanings of Collective Experiences of Ethical Consumption. *Journal of Business Ethics* 2011 110:1, 110(1), 15–32. <https://doi.org/10.1007/S10551-011-1144-Y>

99. Papies, E. K., Aarts, H., & de Vries, N. K. (2009). Planning is for doing: Implementation intentions go beyond the mere creation of goal-directed associations. *Journal of Experimental Social Psychology*, 45(5), 1148–1151. <https://doi.org/10.1016/j.jesp.2009.06.011>

100. Park, H. J., & Lin, L. M. (2020). Exploring attitude-behavior gap in sustainable consumption: comparison of recycled and upcycled fashion products. *Journal of Business Research*, 117, 623–628. <https://doi.org/10.1016/j.jbusres.2018.08.025>

101. Pataranutaporn, P., Liu, R., Finn, E., & Maes, P. (2023). Influencing human-AI interaction by priming beliefs about AI can increase perceived trustworthiness, empathy and effectiveness. *Nature Machine Intelligence*, 5(10), 1076. <https://doi.org/10.1038/s42256-023-00720-7>

102. Pham, T. S. H., & Ahammad, M. F. (2017). Antecedents and consequences of online customer satisfaction: A holistic process perspective. *Technological Forecasting and Social Change*, 124, 332–342. <https://doi.org/10.1016/j.techfore.2017.04.003>

103. Pinski, M., Hofmann, T., & Benlian, A. (2024). AI Literacy for the top management: An upper echelons perspective on corporate AI orientation and implementation ability. *Electronic Markets*, 34(1). <https://doi.org/10.1007/s12525-024-00707-1>

104. Rokka, J., & Moisander, J. (2009). Environmental dialogue in online communities: Negotiating ecological citizenship among global travelers. *International Journal of Consumer Studies*, 33(2009), 199–205. <https://doi.org/10.1111/j.1470-6431.2009.00759.x>

105. Roy, V., Vijay, T. S., & Srivastava, A. (2022). The distinctive agenda of service failure recovery in e-tailing: Criticality of logistical / non-logistical service failure typologies and e-tailing ethics. *Journal of Retailing and Consumer Services*, 64. <https://doi.org/10.1016/j.jretconser.2021.102837>

106. Saari, U. A., Damberg, S., Frömling, L., & Ringle, C. M. (2021). Sustainable consumption behavior of Europeans: The influence of environmental knowledge and risk perception on environmental concern and behavioral intention. *Ecological Economics*, 189. <https://doi.org/10.1016/j.ecolecon.2021.107155>

107. Saikat, S., Dhillon, J. S., Ahmad, W. F. W., & Jamaluddin, R. A. (2021). A systematic review of the benefits and challenges of mobile learning during the covid-19 pandemic. *Education Sciences*, 11(9). <https://doi.org/10.3390/EDUCSCI11090459>

108. Santos de Oliveira, D., & Caetano, M. (2019). Market strategy development and innovation to strengthen consumer-based equity: The case of Brazilian airlines. *Journal of Air Transport Management*, 75, 103–110. <https://doi.org/10.1016/J.JAIRTRAMAN.2018.12.006>

109. Sarioguz, O., & Miser, E. (2024). Assessing the role of artificial intelligence in enhancing customer personalization: A study of ethical and privacy implications in digital marketing. *International Journal of Science and Research Archive*, 13(2), 812. <https://doi.org/10.30574/ijjsra.2024.13.2.2207>

110. Sdrolia, E., & Zaratiadis, G. (2019). A COMPREHENSIVE REVIEW FOR GREEN PRODUCT TERM: FROM DEFINITION TO EVALUATION. *Journal of Economic Surveys*, 33(1), 150–178. <https://doi.org/10.1111/JOES.12268>

111. Sheth, J. (2020). Impact of Covid-19 on consumer behavior: Will the old habits return or die? *Journal of Business Research*, 117, 280–283. <https://doi.org/10.1016/j.jbusres.2020.05.059>

112. Shi, X., & Liao, Z. (2017). Online consumer review and group-buying participation: The mediating effects of consumer beliefs. *Telematics and Informatics*, 34(5), 605–617. <https://doi.org/10.1016/j.tele.2016.12.001>

113. Si, H., Li, N., Cheng, L., Wu, G., & de Vos, J. (2024). Are you a happy traveler? Exploring ridesourcing travelers' satisfaction and subjective well-being. *Transportation Research Part D: Transport and Environment*, 128. <https://doi.org/10.1016/j.trd.2024.104108>

114. Sozer, E. G. (2020). 1. The effects of green marketing practices on green equity and customer tolerance. *Press academia*, 7(3), 102–111. <https://doi.org/10.17261/PRESSACADEMIA.2020.1283>

115. Stolle, D., Hooghe, M., & Micheletti, M. (2010). Politics in the supermarket: Political consumerism as a form of political participation. *International Political Science Review*, 26(3), 245–269. <https://doi.org/10.1177/0192512105053784>

116. Su, T., & Teo, P.-C. (2025). From ESG to Brand Equity: The Mediating Role of Brand Reputation and Brand Attachment. *International Journal of Academic Research in Economics and Management Sciences*, 14(2). <https://doi.org/10.6007/ijarems/v14-i2/25417>

117. Sudbury-Riley, L., & Kohlbacher, F. (2016). Ethically minded consumer behavior: Scale review, development, and validation. *Journal of Business Research*, 69(8), 2697–2710. <https://doi.org/10.1016/j.jbusres.2015.11.005>

118. Sürütçü, Ö., Öztürk, Y., Okumus, F., & Bilgihan, A. (2019). Brand awareness, image, physical quality and employee behavior as building blocks of customer-based brand equity: Consequences in the hotel context. *Journal of Hospitality and Tourism Management*, 40, 114–124. <https://doi.org/10.1016/J.JHTM.2019.07.002>

119. Szmigin, I., Carrigan, M., & McEachern, M. G. (2009). The conscious consumer: Taking a flexible approach to ethical behaviour. *International Journal of Consumer Studies*, 33(2009), 224–231. <https://doi.org/10.1111/j.1470-6431.2009.00750.x>

120. Tang, A. K. Y. (2019). A systematic literature review and analysis on mobile apps in m-commerce: Implications for future research. *Electronic Commerce Research and Applications*, 37. <https://doi.org/10.1016/J.ELERAP.2019.100885>

121. Tezer, A., & Bodur, H. O. (2021). The green consumption effect: How using green products improves consumption experience. *Journal of Consumer Research*, 47(1), 25–39. <https://doi.org/10.1093/JCR/UCZ045>

122. Thompson, C. J., & Coskuner-Balli, G. (2007a). Countervailing market responses to corporate co-optation and the ideological recruitment of consumption. *Journal of Consumer Research*, 34(August), 135–152. <https://doi.org/10.1086/519143>

123. Thompson, C. J., & Coskuner-Balli, G. (2007b). Enchanting ethical consumerism: The case of community supported agriculture. *Journal of Consumer Culture*, 7(3), 275–303. <https://doi.org/10.1177/1469540507081631>; WEBSITE:WEBSITE:SAGE;JOURNAL:JOURNAL:JOCA;REQUESTEDJOURNAL:JOURNAL:JOCA;WGROUPE:STRING:PUBLICATI

124. Thorslund, C. A. H., Sandøe, P., Aaslyng, M. D., & Lassen, J. (2016). A good taste in the meat, a good taste in the mouth – Animal welfare as an aspect of pork quality in three European countries. *Livestock Science*, 193, 58–65. <https://doi.org/10.1016/j.livsci.2016.09.007>

125. Tsai, P. H., Lin, G. Y., Zheng, Y. L., Chen, Y. C., Chen, P. Z., & Su, Z. C. (2020). Exploring the effect of Starbucks' green marketing on consumers' purchase decisions from consumers' perspective. *Journal of Retailing and Consumer Services*, 56. <https://doi.org/10.1016/J.JRETCONSER.2020.102162>

126. Tully, S., Longoni, C., & Appel, G. (2025). EXPRESS: Lower Artificial Intelligence Literacy Predicts Greater AI Receptivity. *Journal of Marketing*. <https://doi.org/10.1177/00222429251314491>

127. Vanninen, H., McNaughton, R. B., & Kuivalainen, O. (2022). The Multiple Dimensions of Embeddedness of Small Multinational Enterprises. *Management International Review*, 62(6), 785. <https://doi.org/10.1007/s11575-022-00487-w>

128. Vermeir, I., & Verbeke, W. (2008). Sustainable food consumption among young adults in Belgium: Theory of planned behaviour and the role of confidence and values. *Ecological Economics*, 64(3), 542–553. <https://doi.org/10.1016/j.ecolecon.2007.03.007>

129. Viglia, G., & Dolnicar, S. (2020). A review of experiments in tourism and hospitality. *Annals of Tourism Research*, 80. <https://doi.org/10.1016/j.annals.2020.102858>

130. Wamba, S. F., Queiroz, M. M., Pappas, I. O., & Sullivan, Y. (2024). Artificial Intelligence Capability and Firm Performance: A Sustainable Development Perspective by the Mediating Role of Data-Driven Culture. *Information Systems Frontiers*. <https://doi.org/10.1007/s10796-023-10460-z>

131. Wang, J., Qiao, L., Zhu, G., Di, K., & Zhang, X. (2025). Research on the driving factors and impact mechanisms of green new quality productive forces in high-tech retail enterprises under China's Dual Carbon Goals. *Journal of Retailing and Consumer Services*, 82. <https://doi.org/10.1016/j.jretconser.2024.104092>

132. Wheeler, S. A., Gregg, D., & Singh, M. (2019). Understanding the role of social desirability bias and environmental attitudes and behaviour on South Australians' stated purchase of organic foods. *Food Quality and Preference*, 74, 125–134. <https://doi.org/10.1016/j.foodqual.2019.01.007>

133. Winit, W., & Kantabutra, S. (2022). Enhancing the Prospect of Corporate Sustainability via Brand Equity: A Stakeholder Model. *Sustainability*, 14(9), 4998. <https://doi.org/10.3390/su14094998>

134. Wiwoho, G., Suroso, A., & Wulandari, S. Z. (2020). Linking adaptive capability, product innovation and marketing performance: Results from Indonesian SMEs. *Management Science Letters*, 10(10), 2379–2384. <https://doi.org/10.5267/J.MSL.2020.2.026>

135. Yamoah, F. A., & Acquaye, A. (2019). Unravelling the attitude-behaviour gap paradox for sustainable food consumption: Insight from the UK apple market. *Journal of Cleaner Production*, 217, 172–184. <https://doi.org/10.1016/j.jclepro.2019.01.094>

136. Yoopetch, C., & Nimsai, S. (2019). Science mapping the knowledge base on sustainable tourism development, 1990–2018. *Sustainability (Switzerland)*, 11(13). <https://doi.org/10.3390/SU11133631>

137. Zerbini, C., Vergura, D. T., & Latusi, S. (2019). A new model to predict consumers' willingness to buy fair-trade products. *Food Research International*, 122, 167–173. <https://doi.org/10.1016/j.foodres.2019.04.008>

138. Zhao, X., & Huang, Z. (2024). A method for exploring consumer satisfaction factors using online reviews: A study on anti-cold drugs. *Journal of Retailing and Consumer Services*, 81. <https://doi.org/10.1016/j.jretconser.2024.103895>