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In the evolving landscape of supply chain and logistics management, intelligent data utilization is critical for optimizing
delivery performance, asset utilization, and operational efficiency. This study presents a comprehensive Al and machine
learning pipeline applied to real-world logistics data involving shipment tracking performance metrics. We implement a
multiclass classification model approach for predictive modeling. Classification models Random Forest, XGBoost
accurately predict shipment outcomes. This Al-Driven intelligence framework delivers actionable insights for logistics
managers, enabling data-driven decisions, improved customer satisfaction, and reduced operational costs. Results
demonstrate significant potential for applying Al to enhance resilience, adaptability, and sustainability in transportation
systems.
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1. Introduction
The integrity of data is crucial for enhancing Al-driven shipment tracking systems' accuracy, as high-quality data significantly
influences the predictive capabilities of Al models; thus, literature suggests that Al-powered data quality management
systems utilize machine learning and automation to perpetually enhance data reliability, optimizing processing workflows
while minimizing human intervention (Shah et al., 2024). Within the logistics field, the integration of Al technologies
markedly enhances operational effectiveness by utilizing real-time analytics and autonomous systems that are contingent
upon precise and trustworthy data for superior performance (Adenuga et al., 2024). The implementation of Al-based data
quality checks in regulated landscapes highlights the urgent requirement to sustain data correctness, all-encompassing nature,
and consistency to meet compliance standards and elevate operational performance (Tomar et al., 2024). Furthermore, the
progress in artificial intelligence and machine learning has facilitated logistics systems in forecasting disruptions and
enhancing routing efficiency, reliant on superior data quality (Rane et al., 2024). In the cargo sector, contemporary recurrent
neural network frameworks have been utilized to markedly enhance data integrity, thus improving the precision of shipment
monitoring and forecasting models (Wong et al., 2020). The merging of Internet of Things and blockchain within logistics
emphasizes the essential nature of data integrity, given that these advancements depend on exact, well-rounded, and timely
information to ensure transparency and foster stakeholder confidence (Ahmed et al., 2021). Innovative architectures that
consistently monitor and validate data authenticity across decentralized networks emphasize the value of upholding high-
quality data metrics to guarantee the trustworthiness of real-time insights and automated choices. The synthesis of these
studies underscores that data quality is essential for the precision and efficacy of Al-driven shipment tracking systems, as it
supports analytical accuracy, operational efficiency, and the reliability of decision-making in logistics (Shah et al., 2024). Al-
enhanced intelligence markedly improves the precision of shipment status classification in logistics through the application of
sophisticated machine learning algorithms and real-time data processing, with models like Extreme Gradient Boosting
(XGBoost) achieving up to 99.92% accuracy in training datasets, thus highlighting their efficacy in optimizing shipment
tracking systems (Ozdemir et al., 2024). Al technologies, notably computer vision and deep learning, play a crucial role in the
accurate classification of parcel conditions, achieving damage detection accuracy rates as high as 98.8%, thus enhancing
quality control and consumer satisfaction(Chaudhary & Singh, 2024). Furthermore, Al-driven predictive analytics and
autonomous systems enhance operational efficiency by reducing human error and improving delivery times(Rane et al.,
2024)(Adenuga et al., 2024). The use of convolutional neural networks (CNN) and long short-term memory (LSTM)
networks in smart logistics systems further refines parcel classification, achieving detection accuracies of up to 98.52% for
specific parcel weights(Sharma et al., 2023). These Al applications not only improve the accuracy of shipment status
classification but also contribute to cost reduction, enhanced customer satisfaction, and increased supply chain
resilience(didast et al., 2024)(Fatorachian, 2024). However, challenges such as data security, regulatory compliance, and
system integration need to be addressed to fully realize the potential of Al in logistics(Kumar, 2025)(Ajayi, 2025). Overall,
Al-driven intelligence is transforming logistics by providing more accurate, efficient, and reliable shipment status
classification, which is crucial for maintaining competitive advantage in the global market(Adenuga et al., 2024). Moreover,
the deployment of digital twins and predictive maintenance tools within logistics networks ensures continuous monitoring and
adaptation, thereby improving the reliability of shipment status predictions(Adenuga et al., 2024). The use of ensemble-based
regression algorithms, such as Random Forest and Gradient Boosting, also contributes to improved generalization error and
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classification accuracy in predicting delivery delays(Rezki & Mansouri, 2024). Finally, the application of Shapley values in
analyzing data feature contributions provides insights into optimizing prediction models, which can enhance the accuracy of
shipment status classification by identifying and leveraging the most impactful data features(Zhang & Qi, 2023). Collectively,
these factors underscore the importance of advanced algorithm selection, real-time data integration, and feature analysis in
achieving high accuracy in Al-driven shipment status classification. By creating and assessing different artificial intelligence
(Al) and machine learning (ML) models targeted at the multiclass classification of logistic shipment status, this study aims to
address the crucial problem of data imbalance.The investigation will assess the efficacy of an array of models, including
“Multinomial Logistic Regression (MLR)”, “Support Vector Machine (SVM)”, “Artificial Neural Networks (ANN)”,
Random Forest (RF)”, “Decision Tree (DT)”, “XGBoost, and “K-Nearest Neighbour (K-NN)”. In order to determine the best
models and methods for creating a high-performing logistic shipment status can precisely classify and predict, this study will
analyze and compare these different methodologies.

The aforementioned Al and ML fraud detection strategies are based on the analyzed research. The remaining sections of
the chapter are arranged as follows: a literature review is conducted in Section 2. The datasets for Section 3 are introduced,
along with the necessary data analysis. The comprehensive elucidation of the artificial intelligence and machine learning
frameworks is delineated in Section 4. Section 5 elucidates the empirical assessment and outcomes pertaining to all the
frameworks. The discoveries, practical ramifications, and summative observations are thoroughly addressed in Section 6.

2. Literature Review

Al- and ML-based predictive models have substantially improved shipment time accuracy from 62.91% to 93.5%, marking a
48.62% enhancement in logistics performance (Mariappan et al., 2023). Al technologies are transforming logistics and supply
chain management (SCM) by promoting data-driven decision-making, automating workflows, and supporting human
expertise rather than replacing it (Boute& Udenio, 2022). The integration of Al, ML, and blockchain strengthens digital
supply chains through enhanced transparency, secure product tracking, and counterfeit prevention in pharmaceutical logistics
(Gupta et al., 2022). Machine learning and blockchain together enhance SCM efficiency, transparency, and fraud mitigation,
fostering more reliable logistics networks (Islam et al., 2023). An Al-enabled sustainable SCM model optimizes vehicle
routing and load capacity, improving logistics distribution efficiency in B2C e-commerce (Qi et al., 2023). Al and ML
technologies optimize capacity, reduce operational costs, improve efficiency, and enhance safety in logistics operations
(Kumar et al., 2022). Al improves SCM across planning, sourcing, production, and delivery by increasing forecasting
precision, product quality, and cost efficiency (Pham & Bris, 2025). Al enhances sustainable logistics by enabling real-time
analytics, resource optimization, and improved environmental performance (Chen et al., 2024). Al strengthens SCM
resilience through improved transparency, agile procurement, and disruption mitigation, especially during crises such as
COVID-19 (Modgil et al., 2022). Machine learning and data analytics predict shipment latency, reduce operational costs, and
improve supply chain responsiveness and efficiency (Aoufi & Haloua, 2025). Integrating industrial 10T and Al in vehicular
logistics improves routing, real-time monitoring, and system performance by up to 98% (Bhargava et al., 2022). Al and ML
models detect irregular transactions and fraudulent behavior, enhancing financial security in supply chain operations
(Lokanan & Maddhesia, 2024). Al enhances SCM by improving efficiency, lowering costs, and elevating customer
satisfaction, though challenges persist regarding data quality and privacy (Goswami et al., 2024). 10T-based supply chain
systems enhanced with deep learning improve disaster-related risk prediction, achieving up to 94% accuracy via hybrid
CNN-BiGRU models (Alzahrani & Asghar, 2023). Al-driven ML classifiers, particularly Random Forest, enable delivery
risk prediction with over 93% accuracy, strengthening logistics decision-making (Al Khaldy et al., 2025). A deep learning
framework combining SOM, PCA, and ANN achieves 96% accuracy in forecasting and enhances model transparency through
SHAP interpretability (Ahmed et al., 2025). AI’s role in SCM spans network design, supplier selection, inventory and
demand planning, and green SCM, with bibliometric analysis revealing five core thematic clusters (Sharma et al., 2022). Al
advances SCM and bioinformatics by optimizing logistics, forecasting demand, and accelerating genomic research and drug
discovery (Didwania et al., 2025). Machine learning enhances supply chain agility and sustainability through improved
forecasting, logistics optimization, and reduced inventory errors (Pasupuleti et al., 2024). Finally, Al and ML strengthen
pharmaceutical supply chain resilience by improving transparency, predictive modeling, and ethical operations, despite gaps
in regulatory adoption (Al-Hourani & Weraikat, 2025).

The integration of these cutting-edge techniques into shipment status classification modeling frameworks has the potential
to greatly improve the forecasting skills needed to combat the issues facing the logistics tracking system. The literature that
was reviewed serves as the basis for the creation of methods such as "MLR", “SVM", "ANN", "RF", "DT", “XGBoost” and
"K-NN" models for shipment classification and prediction, which augment the proficiency in early identification and
classification of logistics activities.

3. Dataset Information
The dataset castoff in this study, obtained from the “Kaggle” repository “(https://www.kaggle.com/datasets/ziyaO7/smart-
logistics-supply-chain-dataset)”. This dataset provides real-time data for smart logistics operations, capturing various aspects
of supply chain management over the past year (2024). It includes information on asset tracking, inventory levels, shipment
status, environmental conditions, traffic, and user behaviors. The dataset features multiple stakeholders within the logistics
network, including asset IDs, timestamps, traffic conditions, waiting times, and reasons for delays. Additionally, the data is
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enriched with real-time information from IoT sensors, such as temperature, humidity, and asset utilization, to facilitate
advanced logistics optimization and decision-making. The target variable, shipment status, helps in identifying shipment
tracking in logistics processes, and the input features are “temperature, humidity, traffic status, waiting time, user purchase
frequency, logistics delay reason, asset utilization and demand forecast” which is essential for enhancing supply chain
efficiency through proactive management and optimization techniques. This dataset is designed to be used for research and
machine learning applications focused on smart logistics and supply chain performance improvement. In total, the dataset
comprises 1000 observations and 8 variables and one multiclass target variable “shipment status” representing potential risk
or causal factors associated with shipment tracking. The “shipment status” variable is categorical and used as the dependent
variable in model training, while the 8 measurement variables serve as independent explanatory features for the Al-ML
models. Table 1 presents the descriptive statistics for these variables, and Figure 1 illustrates the correlation structure among
the structures associated with “shipment status”.

Table 1 Information about Data

SINo Variable Information Category Coding

1 | Timestam Date and time when the data was recorded, representing ) )
P logistics activity

2 |Asset ID Unique identifier for the logistical assets (e.g., trucks) - -

3 |Latitude & Longitude Geographical coordinates of the asset for tracking and ) )

monitoring
4 |mventory Level CL}rrent level of inventory associated with the asset or ) )
- shipment
5 |Shipment Status (Target) Status of the shipment Delayed/Delivered/In Transit 0-2

6 |Temperature (Input) Temperature recorded at the time of the shipment or ) )

transportation
7 |Humidity (Input) Humidity level at the time of recording - -
8 |Traffic_Status (Input) Current traffic condition Clear/Detour/Heavy 0-2
9 |Waiting Time (Input) r];liirlrllztzrs))ent waiting during the logistics process (in ) )
10 |User Transaction Amount Monetary amount associated with user transactions High/Medium 1-2

User_Purchase Frequency

11 (Input) Frequency of purchases made by the user - -
12 aﬁihstt)lcs_Delay_Reason Reason for any delays in the logistics process Mechanical/None/Traffic/Weather | 0-3

e Percentage of asset utilization, indicating how
13 | Asset_Utilization (Input) effectively assets are being used

14 | Demand Forecast (Input) CP;z;i;;;ege(iieggand for the logistics services in the ) )

Binary variable indicating whether a logistics delay

15 |Logistics_Delay occurred

No Delay/Delay 0-1

Table 2 Descriptive Statistics of the Variables of Shipment Status Classification

Sl. No. Variables Variable Types| Min | Q1 |Median|Mean| Q3 | SD | Max |Skewness|Kurtosis
1 |Shipment_Status Int 0.000{0.000| 1.000 |0.962|2.000| 0.813 | 2.000 | 0.069 1.517
2 | Temperature Num 18.00(21.20| 23.80 |23.89(26.60| 3.322 | 30.00 | 0.015 1.931
3 |Humidity Num 50.00({57.20| 65.20 |65.04|72.40| 8.754 | 80.00 | -0.054 1.798
4 | Traffic_Status Int 0.000{0.000| 1.000 |0.999|2.000| 0.809 | 2.000 | 0.002 1.526
5 |Waiting_Time Int 10.00{23.00| 35.00 |35.06|49.00|14.478| 60.00 | 0.006 1.792
6 |User_Purchase_Frequency | Int 1.000(3.000| 6.000 |5.513|8.000| 2.935 |10.000| -0.003 1.712
7 |Logistics_Delay Reason |Int 0.000|{1.000| 2.000 |1.536(3.000| 1.119 | 3.000 | -0.019 1.638
8 |Asset_Utilization Num 60.00(69.47| 79.25 |79.60(89.42|11.631|100.00| 0.044 1.767
9 |Demand_Forecast Int 100.0{144.0| 202.0 [199.3|251.2|59.921| 300.0 | -0.017 1.692
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Figure 1The Correlation Plot among the Variables Associated with “Shipment Status”’

4. Methodology
The proposed chapter employs Al and ML techniques like “Multinomial Logistic Regression”, “Support Vector Machine”,
“Artificial Neural Network”, “Random Forest”, “Decision Tree”, “XGBoost”, and “K-Nearest Neighbour” models enabling
training for multiclass classification and prediction model for shipment tracking. All of the models under study perform worse
than the proposed Random Forest and XGBoost models.

4.1 Multinomial Logistic Regression

Multinomial logistic regression Multinomial logistic regression is a statistical tool of modelling associations among a nominal
dependent variable that comprises of more than two categories and a number of independent variables. It operates by
approximating the likelihood of a membership of a specific class with the help of the logistic function, which makes it useful
in multiclass contexts in diverse areas such as health, social science, and finance (Denisko, 2018).

4.2 Support Vector Machines

Support Vector Machines are supervised learning models that are intended to discover an optimum separating hyperplane,
which maximizes the space between classes. SVMs are useful in linear and nonlinear classification and can be very accurate
in text, bioinformatics as well as picture recognition (Cortes and Vapnik, 1995).

4.3 Artificial Neural Networks

Acrtificial Neural networks consist of a network of interconnected nodes that process information by means of weighted
connections. ANNs are effective in learning nonlinear, highly complicated decision boundaries during classification, and are
therefore useful in speech, and image (Staudenmayer et al., 2009).

4.4 Random Forest

Random Forest is an ensemble algorithm which builds several decision trees based on bootstrap samples as well as random
feature selection. Majority vote is used in making the final prediction thereby increasing accuracy and decreasing overfitting.
Random forest has recorded good results in classification tasks in a wide variety of applications (Breiman, 2001).

4.5 Decision Tree

A decision tree splits data into branches, depending on the thresholds of feature values, which are terminated by class labels
in the leaves. Trees are understandable and easy to interpret in order to do a simple classification, decision analysis, and
variable selection (Ying, 2015).

4.6 XGBoost

XGBoost (Extreme Gradient Boosting) is a high-performance ensemble technique that uses gradient-boosted decision trees. It
uses progressive construction of trees to rectify the mistakes of the previous trees and uses regularization to regulate the
complexity of the model. XGBoost finds a lot of application in machine learning competitions and in real-world prediction
tasks (Chen and Guestrin, 2016; Wiens, 2025).

4.7 K-Nearest Neighbours

K-nearest neighbours (K-NN) is an instance-based, non-parametric algorithm that comes up with a classification of the points
basing on the most frequent classification of the k-closest points. KNN is characterized by the ability to be flexible in terms of
modeling the complicated boundaries of decisions, albeit being computationally expensive on large amounts of data
(Charbuty and Abdulwahab, 2021).

5. Experimental Evaluation and Results of Al-ML Models for Multiclass Classification and
Prediction of the Shipment Status
It is a stimulating mission to identify the key factors of the “shipment status”. The present study is focused on Al-based
prediction and multiclass classification of the shipment tracking using Al and ML-based “Multinomial Logistic Regression”,
“Support Vector Machine”, “Artificial Neural Network”, “Random Forest”, “Decision Tree”, “XGBoost”, and “K- Nearest
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Neighbour” models. It is seen that, the “Random Forest” and “XGBoost” models are outperformed to the other Al-ML based
models.

5.1 Al-ML Models for Multiclass Classification

In this context, using multiclass classification models, the total dataset is used for training. This methodology has been
established to scrutinize the impact of all 8 variables on the classification and prediction of shipment status. Table 3
delineates the accuracy metrics in percent for the training datasets, which are recorded as [39.9, 48.7, 47.9, 100.0, 45.3, 100.0,
63.7], applying “Multinomial Logistic Regression”, “Support Vector Machine”, “Artificial Neural Network”, “Random
Forest”, “Decision Tree”, “XGBoost”, and “K- Nearest Neighbour” models respectively for the classification and prediction
of shipment tracking instances. Figure 2 shows the variable importance of 8 key inputs obtained through RF model to predict
and classify the shipment status.

5.2 Decision Tree Model for Multiclass Classification
The Decision Tree (DT) model constitutes a hierarchical tree-structured classifier that elucidates the interrelationship between
input variables and a target variable that is categorical.

In the context of predictive analytics, the terminal nodes of the tree yield the anticipated class subsequent to the application
of a sequence of decision rules. In the present investigation, the total dataset comprising 1000 observations with 8 input
variables was taken as "100% training" for the purpose of multiclass classification. The DT model was constructed utilizing
the "rpart" package in R software, with "class" selected as the criterion for splitting. The performance of the model was
appraised through the error rate, and the optimal tree was derived with 5 salient predictors, specifically "Asset Utilization",
"Waiting Time", "Demand Forecast", "Temperature”, and "Traffic Status" which collectively resulted in the minimum error.
Nine internal and ten terminal nodes make up the final DT, which is shown in Figure 3, which classifies the data according to
these 5 variables. According to the categorization rules, shipments with asset utilization values less than 69 and waiting time
is less than 19 then status is classified as “delayed”. Shipments with asset utilization values less than 69 and waiting time is
greater than or equal to 19 then status is classified as “delivered”. Shipments with asset utilization values greater than or equal
to 69 and demand forecast is less than 111 then status is classified as “delayed”. Shipments with asset utilization values
greater than or equal to 69 and demand forecast is lying between 111 and 130 then status is classified as “delivered”.
Shipments with asset utilization values greater than or equal to 69, demand forecast is greater than or equal to 182 and
temperature is less than 25 then status is classified as “delayed”. Shipments with asset utilization values greater than or equal
to 88, demand forecast is greater than or equal to 182 and temperature is greater than or equal to 25 then status is classified as
“in transit”. Shipments with asset utilization values is lying between 69 and 88, demand forecast is greater than or equal to
182 and temperature is greater than or equal to 25 then status is classified as “delivered”. Shipments with asset utilization
values is lying between 69 and 92, demand forecast is lying between 130 and 182 and traffic status is equal to 1 then status is
classified as “delayed”. Shipments with asset utilization values is greater than or equal to 92, demand forecast is lying
between 130 and 182 and traffic status is equal to 1 then status is classified as “delivered”. Shipments with asset utilization
values is greater than or equal to 69, demand forecast is lying between 130 and 182 and traffic status is not equal to 1 then
status is classified as “in transit”. This partitioning process persists until the dataset is subdivided into 10 distinct segments,
yielding predicted classifications of [0, 1, 0, 1, 0, 2, 1, O, 1] based solely upon the 5 critical input variables. The findings
suggest that these 5 variables are adequate for the precise classification and identification of "shipment status”. As shown in
Table 3, for the training data, the DT model's accuracy is 45.3. Figure 4 shows the variable importance of 8 key inputs
obtained through DT model to predict and classify the shipment status.

rf_model

Demand_Forecast 9 Asset_Utilization 9
Temperature o Demand_Forecast o
Logistics_Delay_Reason ° Humidity o
Traffic_Status o Temperature o
Waiting_Time o Waiting_Time o
Asset_Utilization ° User_Purchase_Frequency °
Humidity ° Logistics_Delay_Reason o
User_Purchase_Frequency P Traffic_Status o

T T 1 T T T 171

-2 0 0O 40 80
MeanDecreaseAccure MeanDecreaseGin

Figure 2 Variable Importance Using Random Forest for Classification of “Shipment Status”
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Figure 4 Variable Importance Using Decision Tree for Classification of “Shipment Status”

Experimental research indicates that the random forest and XGBoost exceeds all other Al-ML frameworks in terms of
predictive efficacy. Moreover, its ability to produce feature importance metrics significantly improves interpretability,
thereby providing critical clinical insights into indicators associated with "shipment status”. The accuracy metrics for the RF
and XGBoost models, as delineated in Table 3, are recorded as 100.0 and 100.0 percent or the total data as training dataset,
signifying the highest accuracy rate among all models assessed. In contrast, the RF and XGBoost models demonstrated
superior performance relative to other algorithms examined in the context of multiclass classification and the identification of
"shipment status” in logistic systems. Figure 5 shows the model accuracy comparison using all the Al Models for multiclass
classification of the “Shipment Status”.

Table 3 Summarization of the Accuracy for All Al-ML Models

‘Model’ ‘Neurons in Hidden Layers’ | ‘Predictors’ | ‘Output’ | ‘Accuracy (%)’
Logistic Regression -- 8 3 39.9
Support Vector Machine -- 8 3 48.7
Artificial Neural Network 5 8 3 47.9
Random Forest -- 8 3 100.0
Decision Tree -- 8 3 45.3
XGBoost - 8 3 100.0
K-NN - 8 3 63.7

Model Accuracy Comparison
Qi e e |

Accuracy

Figure 5 Model Accuracy Comparison Using All the Al Models for Classification of “Shipment Status”



Twenty Third AIMS International Conference on Management 507

6. Conclusion

The capability of Al-oriented intelligence to distinguish shipment statuses relies on multiple crucial aspects. A predominant
factor is the selection of machine learning algorithms, with Extreme Gradient Boosting (XGBoost) exhibiting exceptional
efficacy in predicting shipment statuses, attaining elevated accuracy levels in both training and testing datasets (Ozdemir et
al., 2024). The incorporation of Al technologies within logistics frameworks, including dynamic routing and real-time
analytics, is also instrumental in augmenting the accuracy of shipment status classification by optimizing delivery pathways
and refining demand forecasting (Badrinarayanan, 2024). Moreover, applying sophisticated deep learning frameworks, which
skillfully understand complicated temporal dynamics, greatly boosts the effectiveness of recognizing delayed orders in
convoluted supply chains (Bassiouni et al., 2024). The utilization of Al in predictive analytics and real-time data processing
further bolsters precise shipment status classification by facilitating proactive decision-making and risk mitigation (Rane et
al., 2024). The efficacy of the shipment classification is scrutinized through “Multinomial Logistic Regression”, “Support
Vector Machine”, “Artificial Neural Network™, “Random Forest”, “Decision Tree”, “XGBoost”, and “K-Nearest Neighbour”
models enabling training for multiclass classification and prediction model for shipment tracking. The performance of the DT
model was appraised through the error rate, and the optimal tree was derived with 5 salient predictors, specifically "Asset
Utilization", "Waiting Time", "Demand Forecast", "Temperature”, and "Traffic Status" which collectively resulted in the
minimum error. According to the experimental findings, the Random Forest and XGBoost models perform the best in terms
of prediction accuracy than any conventional Al and ML model. With accuracy metrics of 100.00 and 100.00 for the whole
training dataset, the RF and XGBoost models have the greatest accuracy of all the models that were tested.This study
delineates the methodological framework for addressing multiclass classification, aiming to enhance logistic activities.
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