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Flexible job shop scheduling problem (FJSP) is one of the complex and important problems in operations management. 

Over time, many heuristic and metaheuristic approaches have been used to find solutions of FJSP. However, the potential 

of the gravitational search algorithm (GSA) is still unknown while solving FJSP. Therefore, the present work uses real 

number encoding-based GSA (RGSA) and chaotic GSA (RCGSA) to solve FJSP. The results of 35 benchmark problems 

and one industrial test case show that RCGSA performs significantly better than RGSA regarding the quality of solutions 

and convergence in a limited number of iterations.  
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1. Introduction 
 Smart manufacturing in Industry 4.0 focuses on meeting the dynamic changes in demand and supply. Therefore, smart 

manufacturing targets shop floor operations, making flexible job shop scheduling problems (FJSP) one of the critical problems 

in operations management (Elnadi and Abdallah, 2024). The FJSP is an extension of the job shop scheduling problem (JSP), 

where the routes of the jobs are not fixed since an operation can be processed on multiple machines. The extension of JSP to 

FJSP was first introduced by (Brucker and Schlie, 1990). The complexity of FJSP is greater than that of JSP, as it includes two 

problem statements of assignment and sequencing. Due to two subproblems, solution approaches can be hierarchical and 

integrated. In hierarchical methods, the two subproblems are treated separately, such that sequencing occurs after assignment. 

In an integrated approach, both subproblems are handled simultaneously (Roshanaei et al., 2013). The FJSP comes under the 

category of combinatorial optimization and is NP-hard in nature, i.e., as the problem size increases, the time required to find 

the exact solution to the problem increases exponentially (Jain and Meeran, 1999). Therefore, several attempts have been made 

over the past three decades to achieve quality solutions in a reasonable amount of time. The solution methodologies for FJSP 

can be divided into exact, heuristics, and metaheuristics. In exact approaches, a mixed integer linear programming model is 

usually formulated, which is further solved by branch and bound algorithm or constraint programming. However, exact 

approaches are not well-suited for large-sized instances. Several heuristics have been used to overcome the limitations of the 

exact approaches, such as scheduling based on the shortest processing time, earliest due date, shortest remaining processing 

time, etc. Heuristics provide results faster than exact approaches but are of inferior quality. Therefore, researchers started 

exploring another class of methods under the approximate approaches known as metaheuristics (Xie et al., 2019). Metaheuristics 

are intelligent algorithms that work on the principle of exploration and exploitation. Recently, metaheuristic algorithms have 

been widely used to handle complex FJSP instances with lower flexibility. Metaheuristic algorithms provide quality solutions 

for large-sized instances in a reasonable amount of time (Dauzère-Pérès et al., 2024). 

 

2. Literature Review 
Some of the earliest works reporting the application of a single solution-based metaheuristic for FJSP, such as the tabu search 

(TS) algorithm, is by (Brandimarte, 1993). Dauzère-Pérès and Paulli (1997) presented an integrated approach to solve FJSP 

using a TS algorithm. Hurink et al. (1994) presented a more sophisticated neighborhood structure than Brandimarte that used 

an integrated approach while performing assignment and sequencing in an FJSP. Fattahi et al. (2007) used integrated and 

hierarchical approaches with simulated annealing (SA) and TS algorithms to solve FJSP of small to medium sizes. The results 

concluded that hierarchical SA is better than other approaches taken in the literature. Yazdani et al. (2010) proposed a parallel 

variable neighborhood search (VNS) to improve the exploration rate through multiple searches. The proposed algorithm proved 

its effectiveness in solving FJSP. Apart from single solution-based metaheuristic approaches, population-based algorithms have 

also gained importance over the past two due to their competitive nature. Some of the most widely used population-based 

metaheuristic algorithms are genetic algorithm (GA) and particle swarm optimization (PSO). Lei (2010) used GA with two 

vector encoding to optimize FJSP with fuzzy processing time. The proposed algorithm performed significantly better than PSO 

and SA. Pezzella et al. (2008) adopted different initialization, crossover, and mutation strategies to optimize the FJSP. The 

proposed method performed better than some TS algorithms. Recently, Xue et al. (2024) proposed an improved version of GA 

with a multi-population search mechanism for FJSP with parallel batch machines. The proposed algorithm performed better 

than some of the baseline algorithms. Zhang et al. (2020) proposed a discrete PSO by mapping the properties of continuous 

PSO using crossover and mutation operators for multiobjective optimization of FJSP. Zarrouk et al. (2019) developed a two-
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level PSO where level I handles assignments, whereas level II is responsible for the sequencing of operations. Two-level PSO 

outperformed some standard algorithms in terms of the quality of the solutions and CPU time. Liu et al. (2021) used three 

neighborhood structures based on a critical path with a hybrid of GA and PSO to optimize FJSP. Xu et al. (2024) recently 

proposed a real-number encoding-based quantum PSO (QPSO) with different neighborhood structures to optimize FJSP. The 

proposed performed significantly better than several state-of-the-art algorithms. Based on the critical analysis of the literature, 

it can be deduced that the most favorable algorithms for optimizing FJSP are GA, PSO, TS, and VNS (Jiang et al., 2023). 

However, despite having decent performance in the continuous domain, the performance of the gravitational search algorithm 

(GSA) has not yet been evaluated for optimization of FJSP. Therefore, the present study aims to quantify the performance of 

GSA and its variant chaotic GSA (CGSA) for optimization of FJSP. 

 

3. Problem Formulation and Mathematical Modelling 
The present study optimizes one of the regular criteria of FJSP, i.e., to minimize the makespan (Cmax) of n jobs to be processed 

on m machines. The mixed integer linear programming formulation of FJSP can be given according to (Chen et al., 2020). Let 

there be n jobs J1, J2, J3,……, Jn to be processed on m machines M1, M2, M3,……, Mm. Let Oij represent the jth operation of ith job 

and ti,j,k denotes the processing time of Oij on one of its capable machines Mk (k=1,2,3,……, m). Ci represents the completion 

time of the ith job. Therefore, the MILP formulation of FJSP can be given as follows: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚𝑎𝑥 = 𝑀𝑎𝑥(𝐶𝑖) (1) 

 

Subjected to: 

 

𝑝𝑖,𝑗,𝑘 + 𝑡𝑖,𝑗,𝑘 ≤ 𝑝𝑖,𝑗+1,𝑘 𝑖 = 1,2,3, … . 𝑛, 𝑗 = 1,2,3, … . , ℎ, 𝑘 = 1,2,3, , , , , 𝑚 (2) 

 

𝑡𝑖,𝑗,𝑘 ≥ 0 𝑖 = 1,2,3, … . 𝑛, 𝑗 = 1,2,3, … . , ℎ 𝑘 = 1,2,3, … . , 𝑚 (3)  

 
∑ 𝑋𝑖,𝑗,𝑘 ≥ 1 𝑖 = 1,2,3, … . , 𝑛, 𝑗 = 1,2,3, … . ℎ𝑚

𝑘=1  (4) 

 

∑ ∑ 𝑋𝑖,𝑗,𝑘 = 1, 𝑘 = 1,2,3, … . . 𝑚ℎ
𝑗=

𝑛
𝑖=1   

 (5) 

𝑋𝑖,𝑗,𝑘 = {
1,  𝑖𝑓 𝑂𝑖𝑗 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

 

In the MILP formulation of FJSP, 𝐶𝑚𝑎𝑥 is the makespan that represents the maximum completion time of all the jobs. In 

equation (1), 𝑝𝑖,𝑗,𝑘 is the starting time of the jth operation of ith job on the kth machine, whereas 𝑝𝑖,𝑗+1,𝑘 is the starting time of 

j+1th operation of ith job on the kth machine. Therefore, constraint 1 ensures the precedence relationship between two operations 

of the same job on the same machine. Equation (3) depicts the non-zero processing time of all the operations. Equation (4) 

shows that each operation should have at least one allowable machine. Equation (5) ensures that each machine can process one 

operation at a time. In equation (6), 𝑋𝑖,𝑗,𝑘 is the binary variable that shows the capability of a machine to process the operation. 

Apart from the abovementioned constraints, certain assumptions must be maintained in the classical FJSSP. These assumptions 

are mentioned below 

1. All jobs and machines are available at a time equal to zero. 

2. Once the operation is processed on a machine, it cannot be interrupted. Therefore, pre-emption is not allowed. 

3. No machine breakdowns are considered. 

4. The machine installation time and transportation time between the operations are negligible. 

5. The precedence relationship should be strictly followed. 

6. There should not be any overlapping of operations assigned on the same machine. 

 

4. Gravitational Search Algorithm (GSA) 
Among all the nature-inspired algorithms, the gravitational search algorithm (GSA) proposed by (Rashedi et al., 2009) is one 

of the famous metaheuristics in the physics-based category. The GSA is inspired by Nweton’s law of gravity and the law of 

motion. According to Newton’s law of gravity, the force acting between the two masses is directly proportional to the product 

of their masses and inversely proportional to the square of the distance between them. Therefore, in GSA, each solution of the 

population is allotted some mass that reflects the quality of the solution. A heavier mass indicates a solution with a high fitness 

value and vice-versa. The mathematical expression for calculating the mass is given in equations (7) and (8). 

 

𝑚𝑎𝑠𝑠𝑝(𝑡) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑝(𝑡)−𝑤𝑜𝑟𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒(𝑡)

𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒(𝑡)
−𝑤𝑜𝑟𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒(𝑡)

 (7) 

 

𝑀𝑎𝑠𝑠𝑃(𝑡) =
𝑚𝑎𝑠𝑠𝑝(𝑡)

∑ 𝑚𝑎𝑠𝑠𝑙(𝑡)𝑁
𝑙=1

 (8) 
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In equation (7), 𝑚𝑎𝑠𝑠𝑝(𝑡) represents the mass value of the pth solution at iteration ‘t’. The 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒(𝑡) and 

𝑤𝑜𝑟𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒(𝑡) denotes the best and the worst solutions present in the population at iteration ‘t’. From equation (7), 

it can be easily observed that a candidate solution close to the best solution in the population is rewarded with a higher mass 

value; on the contrary, the worst solution in the population is allotted a zero mass value. Normalization is done to bring all the 

mass values to a particular range, as shown in equation (8). After calculating the masses, these masses interact with each other 

by applying force on each other in accordance with Newton’s law of gravity. Therefore, the solutions with poor quality are 

attracted towards the heavier mass, which improves their quality. Mathematically, force interaction between the two masses is 

shown in equation (9).  

 

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑎𝑠𝑠𝑖(𝑡)×𝑀𝑎𝑠𝑠𝑗(𝑡)

𝑅𝑖𝑗(𝑡)+𝜖
(𝑥𝑗

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡)) (9) 

 

In equation (9), 𝐹𝑖𝑗
𝑑(𝑡) is the force interaction between masses ‘i’ and ‘j’ for dimension ‘d’. The gravitational constant at 

iteration ‘t’ is represented by 𝐺(𝑡), whereas the distance between the masses is given by the Euclidean distance 𝑅𝑖𝑗(𝑡). To 

prevent the denominator from becoming zero in equation (9), 𝜖 with a minimal value is added. The gravitational constant in 

conventional GSA follows an exponential trend, as shown in equation (10). In the gravitational constant (𝐺(𝑡)), 𝐺𝑜 is 100, and 

α is 20 (Rashedi et al., 2009). 

 

𝐺(𝑡) = 𝐺𝑜𝑒−𝛼
𝑡

𝑇 (10) 

 

In GSA, due to force interaction, the best solutions share information with the average or poor solutions. However, to promote 

exploitation in basic GSA, only top Kbest masses interact with the other solutions. The Kbest parameter is designed so that it 

decreases linearly over the iterations. Therefore, over the iterations, the number of top-best masses interacting with the 

population decreases, promoting exploitation and giving an elitist approach to the algorithm. To bring some stochasticity during 

the force interaction process between masses ‘i’ and ‘j’, a random component is added as given in equation (11). 

 

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗

𝑑(𝑡)𝑁
𝑗=1,𝑗≠𝑖  (11) 

 

After calculating the forces between the masses, the solutions are given an acceleration according to equation (12).  

 

𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑎𝑠𝑠𝑖(𝑡)
 (12) 

 

Once the solutions are given an acceleration, their velocities and positions can be calculated according to equations (13) and 

(14).  

 

𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡) (13) 

 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1) (14) 

 

The GSA outperformed PSO, real genetic algorithm (RGA), and central force optimization algorithm (CFO) in the continuous 

domain (Rashedi et al., 2009). However, premature convergence or stocking into sub-optimal solutions are major concerns with 

GSA (Joshi, 2022). The premature convergence in GSA is mainly due to the masses getting heavier as the iterations pass. As 

the masses get heavier, the acceleration of the agents decreases, decreasing the velocity and step size of the movement. Mirjalili 

and Gandomi (2017) identified the gravitational constant as the parameter responsible for premature convergence in GSA, 

which controls the intensity of force interaction between the masses over the iterations. The gravitational constant in the 

conventional GSA follows an exponential trend, which decays very fast and results in smaller step movements of the search 

agents in the search space, which leads to the trapping of the GSA in the local optima. To resolve the issue of premature 

convergence due to the gravitational constant in the GSA, Mirjalili and Gandomi (2017) embedded the ten chaotic maps to the 

gravitational constant to enhance the exploration power of the GSA and named the corresponding algorithm as chaotic GSA 

(CGSA). To enhance the exploitation power of CGSA, Mirjalili and Gandomi (2017) adopted adaptive normalization while 

embedding the chaotic maps to the gravitational constant. The adaptive normalization technique reduced the normalization 

range over the iterations, reduced the normalized value of chaotic numbers, and boosted the exploitation later in the search. 

Mathematically, the normalization of chaotic sequences in the range [x y] can be normalized into the interval [0 a(t)] as shown 

in equation (15) (Mirjalili and Gandomi, 2017). 

 

𝑐ℎ𝑎𝑜𝑠𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑡) =
(𝑐ℎ𝑎𝑜𝑠(𝑡)−𝑥)×(𝑎(𝑡)−0)

𝑦−𝑥
+ 0 (15) 
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In equation (15), a(t) is adaptive to the number of iterations, and its value changes between a particular maximum (max) and 

minimum value (min). Therefore, the mathematical expression for a(t) can be given as follows: 

 

𝑎(𝑡) = 𝑚𝑎𝑥 −
𝑡

𝑇
(𝑚𝑎𝑥 − 𝑚𝑖𝑛)  (16) 

 

From equation (16), it can be confirmed that the normalization interval keeps on decreasing as time passes. The range of the 

chaotic sequences varies between 0 and 1, except for Chebyshev and the iterative map, which ranges between -1 and 1 (Mirjalili 

and Gandomi, 2017). Therefore, the gravitational constant with chaos can be represented as shown in equation (17). 

 

𝐺(𝑡)𝑐ℎ𝑎𝑜𝑠 = 𝐺(𝑡) + 𝑐ℎ𝑎𝑜𝑠𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑡)  (17) 

 

According to Mirjalili and Gandomi (2017), the results obtained by the sinusoidal map are better than the other maps taken 

in the literature since most part of the sinusoidal map range between 0.5 and 1, which gives more exploration power to the 

algorithm and hence solution quality improves compared to other maps. Therefore, the present work adopts a sinusoidal map 

to test the performance of CGSA for FJSP.  

 

5. Encoding and Decoding 
Initially, the gravitational search algorithm is designed to solve continuous problems. Therefore, to make it suitable for FJSP, 

an encoding and decoding technique is required so that the solution vectors give some information about the FJSP. The present 

work adopts a real number-based encoding method (Xia and Wu, 2005) to map the properties of GSA to make it suitable for 

finding the schedules for an FJSP. Since the present method uses a real-number-based encoding method, the corresponding 

algorithms are named as real-coded gravitational search algorithm (RGSA) and real-coded chaotic GSA (RCGSA). A sample 

problem of fully flexible FJSP is given in Table 1 to demonstrate the real number-based encoding process. The problem in 

Table 1 contains 3 jobs (J1, J2, J3) and 3 machines (M1, M2, M3) with eight operations.  

 
Table 1 A 3*3 Sample Problem for FJSP 

Job Operations M1 M2 M3 

J1 

O1,1 3 4 2 

O1,2 5 2 3 

O1,3 3 4 2 

J2 

O2,1 2 1 3 

O2,2 3 2 1 

O2,3 5 4 6 

 J3 
O3,1 7 4 1 

O3,2 2 1 3 

 

In a real number-based encoding method, a priority matrix is designed based on the processing time of each operation on 

each machine. The priority matrix for the abovementioned problem is given in Table 2. 

 
Table 2 Priority Matrix for 3*3 Sample Problem 

Job Operations Priority order 

  1 2 3 

J1 

O1,1 M3 M1 M2 

O1,2 M2 M3 M1 

O1,3 M3 M1 M2 

J2 

O2,1 M2 M1 M3 

O2,2 M3 M2 M1 

O2,3 M2 M1 M3 

 J3 
O3,1 M3 M2 M1 

O3,2 M2 M1 M3 

 

After generating the priority matrix, the random population is generated with dimensions equal to the number of operations. 

Every candidate solution's lower and upper bounds lie between 1 and the maximum number of machines. Therefore, for the 

problem in Table 1, the lower bound is 1, and the upper bound is 3. Hence, the possible solution vector is shown in equation 

(18). 

 

𝑋 = [2.2511, 3.1610, 1.0003, 1.9070, 1.4403, 1.2770, 1.5588, 2.0367]  (18) 

 

The X vector represents the priority of the machine to be selected for a particular operation. Therefore, the X vector is rounded 

off, and then machines are allotted to each operation according to their priority. An example of the machine assignment is given 

in Table 3. 



Twenty Second AIMS International Conference on Management  2271 

 

Table 3 Allotment of Machines to the Operations According to the Priority Matrix 

Operations O1,1 O1,2 O1,3 O2,1 O2,2 O2,3 O3,1 O3,2 

X vector 2.2511 3.1610 1.0003 1.9070 1.4403 1.2770 1.5588 2.0367 

Priority 2 3 1 1 1 1 1 2 

Machines M1 M1 M3 M2 M3 M2 M3 M1 

 

After the machines are assigned to the operations, sequencing is done by taking the nth operation of each job separately to 

avoid violating the precedence constraints. For example, the first operation of each job is taken and sequenced according to the 

ascending order of their processing time. Similarly, the second operation of each job is sequenced according to the ascending 

order of the completion time of the previous operations to sequence the operations at their earliest starting time. For example, 

the Gantt chart of the Kacem instance with four jobs and five machines (Kacem et al., 2002) in figure 1 shows that no precedence 

constraints are violated, and operations are sequenced according to their earliest starting time. 

 

 

Figure 1 Gantt Chart of the Schedule Produced by RGSA using Real Number-Based Encoding 

 

6. Results and Discussion 
The proposed RGSA and RCGSA are tested on the following benchmark instances: 

6.1 Kacem instances (Kacem et al., 2002) 

The benchmark instances of Kacem et al. (2002) contain five problems, out of which four instances are fully flexible, whereas 

one is partially flexible. The number of jobs ranges from four to fifteen, whereas the machine number varies between five and 

ten.  

6.2 Br instances (Brandimarte, 1993) 

The 10 instances of Brandimarte (1993) are larger in size compared to Kacem’s instances, with the number of jobs ranging 

from 10 to 20, while the number of machines varies between 4 to 15. All the instances are of medium flexibility.  

6.3 Fa instances (Fattahi et al., 2007) 

The 20 instances of Fattahi et al. (2007) are divided into ten small-scale and 10 medium-sized problems. The total instances 

contain problems that are both partially flexible and fully flexible. 

Since FJSPs are computationally expensive, the population size is kept at 10 while the maximum number of iterations is 

maintained at 100. To analyze the performance of RGSA and RCGSA on the benchmark instances, the algorithms are run 10 

times independently. The mean and standard deviation (std), along with the best values, are reported for the initial assessment 

of the algorithms. The size of each instance is mentioned with its lower bound (lb) or best-known solution obtained by any 

algorithm. A relative error (RE) is calculated using the expression given in equation (19) to measure the deviation of the best 

values obtained by the algorithms from the lower bound. 

 

𝑅𝐸 =
𝐶𝑚𝑎𝑥−𝑙𝑏

𝑙𝑏
 (19) 

 

In equation (19), RE is the relative error, 𝐶𝑚𝑎𝑥 is the best makespan obtained by RGSA or RCGSA, and lb is the lower bound 

or the best-known solution obtained by any algorithm. Apart from RE, mean relative error (mean_RE) is also reported for each 

benchmark set of instances for comparison purposes. All the experiments were done on MATLAB R2021b with a computer 

system with an i7 processor and 10 GB RAM. The results of Fa instances are given in Table 4. The results of the Fa instances 

in Table 4 show that the performance of RCGSA is better than that of RGSA due to the enhanced exploration rate of RCGSA. 

It can be noted from Table 4 that as the size of the instance increases, the RE value increases for both RGSA and RCGSA. 

However, the mean_RE value of RCGSA is better than that of RGSA.  

 
Table 4 Results of RGSA and RCGSA for Fa Instances 

Problem Size lb RGSA RCGSA 

   Best Mean std RE Best Mean std RE 

Fa1 2*2 66 66 66 0 0 66 66 0 0 

Fa2 2*2 107 107 107 0 0 107 107 0 0 

Fa3 3*2 221 221 224.3 5.558 0 221 221.5 4.743 0 



2272 Twenty Second AIMS International Conference on Management 

 

Fa4 3*2 355 339 342.1 6.539 -0.045 339 341.2 4.638 -0.045 

Fa5 3*2 119 119 119 0 0 119 119 0 0 

Fa6 3*3 320 320 320.7 2.213 0 320 320.7 2.213 0 

Fa7 3*5 397 397 397 0 0 397 397 0 0 

Fa8 3*4 253 216 227.1 10.587 -0.146 216 228.8 12.847 -0.146 

Fa9 3*3 210 210 212 4.216 0 210 213 4.216 0 

Fa10 4*5 516 466 491.7 17.575 -0.096 478 490 12.328 -0.073 

Fa11 5*6 396 457 490.9 39.948 0.154 447 472.2 23.827 0.128 

Fa12 5*7 396 457 468.8 12.788 0.154 436 460.4 16.153 0.101 

Fa13 6*7 396 499 555.4 31.081 0.260 491 533.2 31.657 0.239 

Fa14 7*7 496 561 676.7 65.892 0.115 576 645.1 38.118 0.161 

Fa15 7*7 414 598 639.8 22.972 0.444 549 601.8 27.848 0.326 

Fa16 8*7 469 646 700.2 30.684 0.377 649 702.7 44.136 0.383 

Fa17 8*7 619 925 1012.2 82.221 0.494 859 995.6 117.833 0.387 

Fa18 9*8 619 1038 1321.6 218.494 0.676 925 1104.9 209.370 0.494 

Fa19 11*8 764 1393 1997.8 310.732 0.823 1170 1465.5 194.577 0.531 

Fa20 12*8 944 1717 2453.3 525.979 0.818 1508 1936.5 475.876 0.597 

mean_RE      0.2014    0.1545 

 

The results of Kacem instances are given in Table 5. From Table 5, it can be deduced that RGSA and RCGSA are optimal 

for Kacem1. However, an increase in the instance size deteriorated the performance of both RGSA and RCGSA. However, 

RCGSA provides better results than RGSA for each instance in terms of the mean and RE values.  

 
Table 5 Results of RGSA and RCGSA for Kacem Instances 

Problem Size lb RGSA RCGSA 

   Best Mean std RE Best Mean std RE 

Kacem1 4*5 11 11 12.9 1.100 0 11 12.1 1.100 0 

Kacem2 8*8 14 20 25.4 3.627 0.428 19 21.5 2.173 0.357 

Kacem3 10*7 11 21 25.4 3.062 0.909 17 22.4 3.777 0.545 

Kacem4 10*10 7 19 21.6 1.955 1.714 14 18.7 2.406 1 

Kacem5 15*10 11 31 35.1 2.806 1.818 27 30.6 2.988 1.454 

Mean_RE      0.9738    0.6712 

 

The results of Br instances are given in Table 6. Since Br instances are larger in size compared to Fa instances and Kacem 

instances, RE produced by RGSA is significantly higher. Although RCGSA maintains better mean values than RGSA, the best 

values obtained are still far from lb, as indicated by RE values.  

 

Table 6 Results of RGSA and RCGSA for Br Instances 

Problem Size lb RGSA RCGSA 

   Best Mean std RE Best Mean std RE 

Br1 10*6 36 49 55.6 5.910 0.361 44 46.7 2.311 0.222 

Br2 10*6 24 39 43.9 3.695 0.625 33 36.7 1.946 0.375 

Br3 15*8 204 457 481.7 19.471 1.240 393 440.3 26.348 0.926 

Br4 15*8 48 184 203.8 17.806 2.833 155 188.5 19.642 2.229 

Br5 15*4 168 228 265.5 21.593 0.357 205 224.9 13.698 0.220 

Br6 10*15 33 207 220.8 9.390 5.272 151 196 20.725 3.575 

Br7 20*5 133 190 226.6 29.993 0.428 165 188.9 26.530 0.240 

Br8 20*10 523 1996 2074.7 48.327 2.816 1805 1950 91.057 2.451 

Br9 20*10 299 1642 1720.9 50.034 4.491 1509 1623.6 61.339 4.046 

Br10 20*15 165 1376 1406.7 20.028 7.339 1360 1396.3 21.234 7.242 

mean_RE      2.57    2.15 

 

The best and mean fitness curves are plotted for Kacem instances in figure 2 to track the search history of RGSA and RCGSA.  

 

 

Figure 2 Convergence Curves of RGSA and RCGSA for Kacem Instances 
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Figure 2 shows that due to the enhanced exploration power of RCGSA, it reaches a better solution in a limited number of 

iterations than RGSA.  

 

6.4 Performance Evaluation of the RGSA and RCGSA on An Industrial Test Case 

An industrial problem from Xu et al. (2024) is taken to analyze the performance of RGSA and RCGSA in real-world test cases. 

The problem statement demands an optimal schedule for machining a hydraulic gear pump with six components and six 

machining centers. The detailed information of the problem, such as the number of operations, processing time, and flexibility, 

can be obtained from Xu et al. (2024). The number of components is increased by a multiple of six to analyze the impact of 

scalability on the performance of the algorithms. The results for the industrial test case are given in Table 7. 

 
Table 7 Results of RGSA and RCGSA for An Industrial Test Case 

Problem Size lb RGSA RCGSA 

   Best Mean std RE Best Mean std RE 

Problem1 6*6 56 65 75.3 5.498 0.160 66 74.3 4.164 0.178 

Problem2 12*6 92 120 130.6 8.971 0.304 109 125.3 9.809 0.184 

Problem3 18*6 135 184 194.6 9.489 0.362 161 173.3 12.202 0.192 

Problem4 24*6 180 230 270.9 26.074 0.277 207 232.8 19.611 0.15 

Problem5 30*6 225 324 391.2 46.913 0.44 251 292.4 21.706 0.115 

Problem6 36*6 267 403 479.9 37.793 0.509 328 401.8 39.563 0.228 

Mean_RE      0.342    0.1745 

 

From Table 7, it is evident that the search capability of RCGSA is better than that of GSA due to the chaotic behaviour 

embedded in it. The best and mean values of the algorithms are degrading as the problem size is scaling. However, the RE 

values produced by RCGSA are far better than those produced by RGSA. The convergence behaviour of the algorithms is 

analyzed by plotting the best and mean fitness curves against the number of iterations, as shown in figure 3. Except for problem 

1, the RCGSA can achieve a better solution faster than RCGSA in fewer iterations. Convergence analysis proves that RCGSA 

better establishes the exploration and exploitation trade-off.  

 

 
Figure 3 Convergence Curves of RGSA and RCGSA for an Industrial Test Case 

 

A Wilcoxon’s signed rank test is done to have a pair-wise comparison for each problem to statistically analyze the best and 

mean values obtained by RGSA and RCGSA. The R+ (sum of positive ranks), R- (sum of negative ranks), and p-values are 

reported in Table 8 for statistical validation of the performance of RCGSA against RGSA. From Table 8, it can be confirmed 

that RCGSA is significantly better than RGSA while considering both the best and mean values. For the best values, RCGSA 

outperforms RGSA 27 times out of 41, whereas 33 times, the average performance of RCGSA is better than RGSA. The p-

value indicates significant improvement while combining chaos with GSA for FJSPs. 

 

Table 8 Results of Wilcoxon’s Signed Rank Test for best and Mean Values Obtained by RGSA and RCGSA 

Algorithm Winner Ties R+ R- p-value 

RCGSA_best vs RGSA_best 27 10 466.50 29.50 1.80e-05 

RCGSA_mean vs RGSA_mean 33 5 649 17 6.88e-07 

 

7. Conclusion 
The present work evaluates the performance of GSA and chaotic GSA (CGSA) for FJSP using a real number-based encoding 

method, and the corresponding algorithms are named RGSA and RCGSA. The performance of the algorithms is analyzed on 

35 benchmark instances and 6 real-world test cases. It is observed that the RGSA is well-suited for small-scale instances. 

However, as the size of an instance increases, the relative error (RE) from the lower bound increases in case of RGSA, but 

RCGSA maintains a better value for almost every case compared to RGSA. The significant improvement in the performance 

of the RCGSA, as proved by Wilcoxon’s signed rank test, is due to the better exploration-exploitation characteristics than 

RGSA due to the presence of the sinusoidal chaotic sequences. Furthermore, the convergence analysis proves that RCGSA 
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converges to a better solution in a shorter time than RGSA. Moreover, the scope of the present work can be extended to improve 

the performance of RCGSA further by incorporating some local search methods based on the critical paths. 
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