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This study proposes a sustainable vehicle routing problem that considers economic, environmental, and social objectives
within a realistic, variable-speed scenario. The model aimed to minimize fuel consumption and transport costs while
maximizing customer satisfaction. Fuel consumption has two parts, depending on the speed variation and the fixed part.
Time windows are designed using generalized bell membership functions, offering flexibility to handle uncertainty better
than classical time windows. The solution approach leverages ant colony optimization, while sensitivity analysis examines
how input variables impact objectives, providing a robust tool for sustainable and realistic decision-making in
transportation planning.
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1. Introduction
Logistics plays a crucial role in the development of any nation as it contributes significantly to the nation’s gross domestic

product (GDP) due to its ability to facilitate the movement of goods, people, and resources. An efficient transportation system

facilitates industries in handling raw materials and distributing finished products in an effective way to expand their business.

However,  excessive carbon emissions have become an obstacle  to the long-term sustainability  of  transportation as it  is  the

primary cause of global warming (Li et al., 2024). Thus, the logistic networks should primarily be designed to minimize carbon

emissions by reducing fuel consumption. Secondarily, profits are the ultimate goal of any organization, so the minimization of

transportation costs should be considered when structuring a vehicle routing problem (VRP). Social issues must be considered

alongside  environmental  and  economic  factors  to  make  a  transportation  model  fully  sustainable.  Therefore,  customer

satisfaction is considered the third objective, which needs to be maximized. The fuel consumption consists of two parts: constant

fuel consumption and variable fuel consumption due to variations in speeds. The time windows of the customers are modeled

as a generalized bell membership function for more flexibility in customer preferences. Thus, the problem is formulated as a

mixed integer linear programming model considering all three sustainability issues. 

The capacitated vehicle routing problem (CVRP) is one of the simplest forms of VRP, where a number of customers are

served by a set of vehicles with limited capacity from a distribution center. CVRP deals with the total traveled distance, traveling

time, and other parameters on a demand basis (Praveen et al., 2022). This study is an extension of the CVRP that considers

sustainability along with heterogeneous vehicles, flexible time windows, and time periods. The consideration of heterogeneous

vehicles  is  crucial  because  they  have  various  fuel  consumption  rates,  speed  ranges,  specifications,  and  maintenance  costs,

making Vehicle Routing Problems (VRP) a complex combinatorial optimization challenge (Behnamian et al., 2023). Due to its

NP-hard  nature,  a  metaheuristic  algorithm is  an  excellent  approach  as  it  can  explore  an  ample  solution  space  to  provide  a

sufficiently good solution (Consoli, 2006). Ant colony optimization (ACO), a population-based approach, is chosen to solve

the current problem and explore a broad solution space. ACO also effectively handles heterogeneous vehicles by allowing ants

to consider various vehicle types and their capacities (Alba et al., 2012).

The rest of the paper is organized as follows. Section 2 performs a relevant study of the past literature. In Section 3, the

mathematical model is constructed, and the problem is formulated. The solution approach is presented in Section 4. Section 5

performs the experimental analysis. Finally, the conclusions are made, and future research directions are provided in Section 6.

2. Literature Review
More than sixty years have passed since Dantzig and Ramser (1959) introduced the vehicle routing problem. After that, many

studies have been performed that considered various extensions of the classical VRP. This section has studied brief literature

that  mainly  considered  green  or  sustainable  VRP.  Niu et  al.  (2018a)  performed a  real-world  open vehicle  routing problem

considering the minimization of fuel  consumption and driver wages with the help of third-party logistics.  They studied the

effect  of  various  vehicle  types  and  found  that  the  mean  total  cost  is  the  lowest  for  light-duty  vehicles  (Niu  et  al.,  2018b).

Messaoud  et  al.  (2018)  formulated  a  green  dynamic  VRP to  minimize  total  carbon dioxide  emissions  by  incrementing  the

loading rate and reducing the empty runs for sustainable transportation. They addressed their problem using benchmark datasets

from the Green Vehicle Routing Problem (GVRP), incorporating some modifications. Rabbani et al. (2018) presented a time-

dependent GVRP with time windows under stochastic uncertainty. Their study considered objective functions of different sizes
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and varying situations to minimize total transportation cost and pollution, as well as maximize customer satisfaction and vehicle

reliability. Hooshmand et al. (2019) presented a novel extension of the VRP with the consideration of alternative fuel-powered

vehicles (AFV) in a time-dependent scenario to minimize carbon dioxide emissions, considering refueling decisions. Ashtineh

and  Pishvaee  (2019)  have  also  performed  a  life  cycle  analysis  of  alternative  fuel-powered  VRP to  evaluate  economic  and

environmental performance considering variable engine speed. They have shown that there will be a significant reduction in

GHG emissions for AFVs compared to conventional diesel-based vehicles. A pollution location-inventory-routing problem was

introduced by Karakostas et al. (2020), integrating both economic and environmental decisions, taking heterogeneous vehicles

into account.  Shi  et  al.  (2020) have developed a robust  optimization model  of  VRP with synchronized visits  and uncertain

scenarios like uncertain service time and travel time, taking GHG emissions as their objective.

Abdullahi et al. (2021) studied the sustainability dimensions for the GVRP, considering transportation cost, fuel consumption,

and cost of accidental risk as their objectives. They performed a sensitivity analysis to observe the impact of each sustainability

dimension and revealed that there would be a slight reduction in total costs when considering all three sustainability dimensions

together. Zarouk et al. (2022) proposed a GVRP with stochastic demands, variable travel times, and soft customer time windows

to  minimize  energy  consumption  and  maximize  customer  satisfaction.  Behnamian  et  al.  (2023)  presented  a  GVRP  with  a

refueling constraint, considering clean fuel to be a crucial factor for reducing environmental pollution. They have taken Speed-

dependent  fuel  consumption  as  their  objective  function,  which  is  minimized  using  various  technologies  for  refueling.  A

mathematical model of VRP with split pickup and delivery was established by Ren et al. (2023), considering traffic conditions

to minimize fixed cost, carbon emission cost, and penalty cost when serving multi-category goods. Lou et al. (2024) proposed

a  low-carbon  VRP  that  considers  time-dependent  speeds,  road  conditions,  and  time  windows  to  minimize  total  carbon

emissions.  They  validated  their  proposed  model  through  a  case  study  with  traffic  data.  Their  research  shows  that  the

consideration of time-dependent speeds and speed fluctuation reduces a noticeable reduction in carbon emissions. Gülmez et

al. (2024) presented a green delivery routing problem by considering flexible time windows to minimize overall costs, use of

fossil fuel, and customer satisfaction. Their research revealed that incorporating multiple time windows eases deliveries and

provides greater flexibility. Table 1 represents the objective function and operational considerations of the previous literature

and the considerations for the current study. 

Table 1 Comparative Analysis of Objectives and Operational Considerations
Objective Function Consideration Operational Consideration

Reference Fuel Consumption 

/Carbon Emission

Transportation/Routing 

Costs

Multi-

Objective
Sustainability

Time 

Period

Heterogeneous 

Fleet

Flexible/ Soft 

Time Windows

Niu et al. (2018)  

Messaoud et al. 
(2018) 

Rabbani et al. 
(2018)     

Hooshmand et al.
(2019)  

Ashtineh and 
Pishvaee (2019) 

Karakostas et al. 
(2020)    

Shi et al. (2020)   

Abdullahi et al. 
(2021)   

Zarouk et al. 
(2022)     

Behnamian et al. 
(2023)  

Ren et al. (2023)   

Lou et al. (2024)   

Gülmez et al. 
(2024)     

This study       

The literature review explored various aspects, including minimizing fuel consumption, carbon emissions, and transportation

costs,  while considering factors like vehicle types,  time-dependent scenarios,  and time windows consideration. Most of the

literature emphasizes the advancement in addressing both economic and environmental objectives in VRP. However, the social

dimensions are less studied in the VRP context, which makes the model a sustainable one. The contribution of the paper is

outlined below, depending on the shortcomings of the studied literature.

1. This study considered all three sustainability issues, i.e., economic, environmental, and social considerations.

2. A generalized bell membership function is considered for customers’ time windows.

3. A mixed fleet of vehicles is considered with various speeds, weights, and engine modules.
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4. The model is tested on several benchmark instances and applied to a logistics distribution center from the literature for its

verification and applicability.

3. Problem Formulation and Mathematical Modelling
3.1 Problem Description
The problem is structured as a closed-loop logistics distribution network, where a distribution center (denoted as 0) serves a

group of N customers with known demands and time windows [ai,	bi]. The service is carried out using a mixed fleet of vehicles

(M = 1,	2,…,	 M )  over  various  time  periods	 (T = 1,	2,…,	 t ).  The  number  of  available  vehicles of type m ∈M is	nm. The

weight capacity of vehicle type m is	Qm. Distance traveled between nodes (i,	j) by vehicle m is	dij. The binary variable	xmtij  is

equal to 1, if vehicle m travels in time period t within nodes (i,	j). The product weight carried between nodes (i,	j) by vehicle

m in time period t is	amtij  with speed	vmt . qmti  represents the product weight delivered to customer i by vehicle m in time period

t. Moreover, the following assumptions are made.

There is a single distribution center.

 Each customer is served once by one vehicle during the specified time period.

 Each route starts and ends at the distribution center.

 The demand of each customer is known previously.

 The total customer demands do not exceed the total vehicle capacity.

 All picked-up goods must be delivered to the customers.

3.2 Amount of Fuel Consumption (FC)
According to the International Energy Agency (IEA), logistics accounts for around 24% of greenhouse gas (GHG) emissions,

and ground transport  contributes  around 72% of  the  total  logistics  carbon emissions  (Gülmez et  al.,  2024).  Therefore,  it  is

essential  to  consider  the  carbon  emissions  generated  by  road  transportation  as  an  objective  function.  The  amount  of  fuel

consumed consists of two parts. The first part, which consists of constant fuel consumption, is taken from the Comprehensive

Modal Emissions Model (CMEM) equation introduced by Barth et al. (2004). The second part, with variable fuel consumption,

is adopted from Behnamian et al. (2023) and is calculated from the inverse mileage of the vehicles. The vehicle’s engine module

and weight module are responsible for the fixed fuel consumption part. The speed module is responsible for the variable fuel

consumption part,  which consists  of  instantaneous speed (vmt ),  ideal  speed (vmideal)  for  the lowest  fuel  consumption and the

maximum  speed  (vmmax).  The  speed  values  of  the  vehicles  are  obtained  from  real-time  Google  Maps.  The  amount  of  fuel

consumption (in liters) is shown in equation (1). The amount of fuel consumption due to variations in speeds for various types

of vehicles is shown in figure 1. It shows that at a speed range of 35-40 km/hr, all types of vehicles perform well in terms of

fuel consumption, and the consumption amount increases gradually with the increase in vehicle speed.

FC = λdij
KmEmVm
vmt

+ Wm + Amtij γ
mα + vmt 2βmγm +

vmt − vmideal
vmmax

2Rm  (1)

Where,	λ = ε / (ψĸ),	γm = 1 / (1000ηifη), α = (τ + gsinθ + gCrcosθ), βm = 0.5CdρAm, η	= fuel efficiency. Other parameters are

described in Table 2 with their specific values.

Table 2 Vehicle Common Parameters with their Values (Obtained from Cheng et al., 2017)
Notation Description Typical Value
� Acceleration (m/s2) 0

g Gravitational constant (m/s2) 9.81

� Slope of the road (degree) 0

Cr Rolling resistance coefficient 0.01

� Efficiency of diesel engines 0.45

� Density of air (kg/m3) 1.2041

� Fuel-air mass ratio 1

� Conversion factor (L/g) 737

ĸ Heating value of diesel (kJ/g) 44

C
f Unit cost of diesel fuel (£/L) 0.7382

Ce Unit carbon emission cost (£/kg) 0.248

� Carbon emission for unit fuel consumption (kg/L) 2.669

Cd Driver cost (£/min) 0.0022
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Table 3 Vehicle-Specific Parameters and their Values (Obtained from Cheng et al. 2017)
Type of Commercial VehicleNotation Description Light Medium Heavy

Km Engine friction factor (kJ/rev/L) 0.25 0.2 0.15

Em Speed of engine (rev/s) 39 33 30.2

Vm Displacement of engine (L) 2.77 5 6.66

W Curb weight (kg) 4672 6328 13154

�m
if Drive train efficiency 0.4 0.45 0.5

Cm
d Aerodynamics drag coefficient 0.6 0.6 0.67

Qm Capacity (kg) 2585 5080 17236

Am Vehicle frontal area (m2) 9 9 9.8

nm Number of vehicles of type m 6 3 2

Mcm Maintenance costs of vehicle m (£) 1.08 1.35 2.43

Rm Speed-dependent fuel consumption per km 0.11 0.14 0.2

Figure 1 Representation of Variation in Fuel Consumption Due to Changes in Speed for Different Vehicles (Source: Cheng et al., 2017)

3.3 Transportation Cost (TC)
Transportation  costs  consist  of  three  main  parts:  driver  costs,  maintenance  costs,  and  carbon  emissions  costs,  as  shown in

equation (2). The driver cost is comprised of the costs due to time spent traveling, servicing, and waiting. The maintenance

costs are responsible for fixed costs due to inspection, oil change, parts repair, and replacement. The third part includes the

carbon tax due to emissions of the vehicles computed from the amount of fuel consumption.

TC = Sti +
dij
vmt
Cd +Mcm + λdij(Cf + Ceσ) K

mEmVm
vmt

+ (Wm + Amtij )γ
mα + vmt 2βmγm +

vmt − vmideal
vmmax

2Rm           (2)

   Where, Sti is the service time for node	i.

3.4 Customer Satisfaction (CS)
Customer satisfaction in the Vehicle Routing Problem (VRP) is an essential metric that reflects how well the vehicle routing

solution  meets  customer  needs  regarding  service  quality.  Time  windows  significantly  influence  customer  satisfaction  in

delivery services, as they are essential in ensuring the convenience and dependability of the delivery process (Gülmez et al.,

2024). This paper considered the customers’ time windows as a generalized bell membership function (GBMF) instead of a

classical time window function (CTWF). The GBMF provides a more flexible, realistic, and adaptable approach to modeling

customer satisfaction compared to the CTWF. The customer satisfaction comprised of the GBMF is presented in equation (3).

CS = Idi × µi           (3)

Where Idi= importance degree of customer	i, and the GBMF, µi(Tai,	ai,bi,ci) = 1

1 +
(Tai

− ci)
ai

2bi

 with Tai	as the arrival time of a

vehicle at node	 i,  ai  as width, ci  as center and bi  is responsible for the slope of node	 i  (Yilmaz, 2015). Therefore, customer

satisfaction can be rewritten in equation (4).

CS= 
qmti
∑qmti

1

1 +
(Tai

− ci)
ai

2bi

          (4)

The GBMF and the CTWF are shown in figure 2, along with various critical points such as the earliest arrival time (EAT),

the start of the classical time window (CTWS), the end of the classical time window (CTWE), and the latest arrival time (LAT).
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Figure 2 The Variation of Customer Satisfaction with Arrival Time

The constraints corresponding to the three objective functions are expressed below in equations (5)-(14).

∑i ∈N∑m ∈Mx
mt
ij ≤ 1,	 ∀ 	j ∈N\{0},t ∈ T           (5)

∑j ∈Nx
mt
ij =∑j ∈Nx

mt
ji ,	 ∀m ∈M,i ∈N,		t ∈ T           (6)

∑i ∈NA
mt
ij −∑i ∈NA

mt
ji = qmtj ,	j ∈N\ 0 ,	m ∈M,	t ∈ T,	i ≠ j           (7)

qmtj x
mt
ij ≤ Amtij ,	 ∀ i,j ∈N,	m ∈M,	t ∈ T           (8)

Amtij ≤ (Qm)xmtij , ∀ i,j ∈N,	m ∈M,	t ∈ T         (9)

∑i ∈Nx
mt
0i ≤ nm,	 ∀ i ∈N,	m ∈M,	t ∈ T         (10)

Tai − Taj + Sti +Wti + dij(x
mt
ij /vmt ) ≤ Lij 1 − xmtij ,	 ∀ i ∈N,	j ∈N\{0},	m ∈M,	t ∈ T,	i ≠ j          (11)

ai ≤ Tai ≤ bi,	 ∀ i ∈N\{0}         (12)

Tai − sj + Sti +Wti + dj0(x
mt
j0 /vmt ) ≤ Lij 1 − xmtj0 ,	 ∀ i ∈N,	j ∈N\{0},	m ∈M,	t ∈ T,	i ≠ j            (13)

xmtij ∈ 0,	1 ,	 ∀ i,j ∈N,	m ∈M,	t ∈ T         (14)

Constraints (5) indicate that each customer is visited once during the period. Constraints (6) are specifying the vehicle balance

equations. Capacity constraints of vehicles are described by constraints (7). Constraints (8) and (9) are responsible for the load-

carrying capacities of the vehicles. Constraints (10) specify the maximum number of vehicles of each type. The time window

constraints of the customers are designated in constraints (11)-(13), with 	Lij = max  (0, bi + Sti − ai + 	dij/v
m
t ) and sj	denoting the

total time traveled on a route with	sj = yj + tj + dj0/vmt . The binary variable is defined in constraints (14).

   Constraints  (8)  and  (9)  are  non-linear,  containing  multiplication  of  decision  variables.  The  Big-M  method,  as  used  by

Alinaghian and Zamani (2019), is applied to the linearization of the constraints and is shown in equations (15)-(17).

qmtj ≤ Amtij +M(1 − xmtij )         (15)

Amtij −M 1 − xmtij ≤ Qm         (16)

Amtij ≥ −Mxmtij         (17)

4. Solution Approach
Ant  colony  optimization  (ACO)  is  applied  to  solve  the  multi-objective  optimization  problem.  A  partial  rank  correlation

coefficient  (PRCC)  sensitivity  analysis  is  also  conducted  to  gain  insights  into  the  input-output  relationships  among  the

parameters. Figure 3 illustrates the research methodology proposed in this study.



2654  Twenty Second AIMS International Conference on Management

Figure 3 Proposed Framework for the Research

4.1 ACO Algorithm
The ACO algorithm is a metaheuristic algorithm proposed by Dorigo and Di Caro (1999). It was introduced as a tool to solve

the traveling salesman problem, and later on, it is being used to solve VRP effectively, as it can solve NP-hard problems (Li et

al., 2020). The algorithm is based on the searching behaviour of ants, where the ants release pheromones on their way, and the

subsequent ants follow the shortest path with higher pheromone concentration. Colorni et al. (1991) proposed the formula for

the probabilistic decision rule of the ACO, as shown in equation (18).

PBmij =
τij
α ηij

β

∑
m ∈NHki 		

τik
α ηij

β				 ∀ j ∈NHki                    (18)

Where, PBmij  denotes the probability of ant m	(m = 1,2,…M) to proceed from node i to node	j. The pheromone value and the

heuristic information are indicated by τij and ηij on arc	(i,j). α	and	β represent the pheromone importance factor and heuristic

importance factor, respectively. The possible neighbourhood of ant m is represented as	NHki .
The pheromone update rules of ACO introduced by Colorni et al. (1991) are presented in equations (19) and (20). Here, ρ is the

pheromone  evaporation  degree,  Q  denotes  the  total  amount  of  pheromone  released  and  ∆ τkij  is  the  amount  of  pheromone

deposited on edge (i,j) by mth ant between time t and	(t + 1).

τij t + 1 = 1 − ρ τij t +∑Mm = 1 ∆ τmij t          (19)

∆ τmij =
Q/dij,	if ant	m	travels in edge	(i,	j)

0								,																																					otherwise
         (20)

Algorithm 1 presents the pseudo-code of the ACO-based VRP algorithm.

Algorithm 1: ACO-Based Vehicle Routing Problem
1. Initialization:
   Define problem parameters (number of vehicles, customer demands, distance matrix, etc.).

   Set ACO parameters: number of ants, number of iterations, pheromone importance factor (α), heuristic importance factor (β), pheromone

evaporation rate (ρ), and initial pheromone level (τ0).

   Initialize pheromone trails (τij) on all edges (i, j) to a small positive constant.

   Define heuristic information (ηij).

2. Main Loop (for each iteration):
For each iteration:

For each ant k:

Start from the depot

While not all customers are visited:

Select the next customer j using the probability rule (balance between pheromone τij and heuristic ηij)

Move to customer j and add customer j to the ant’s tour

Update the vehicle’s current load

If vehicle is full or all customers are visited:

Return to depot and start a new route

End If
End While
End For
Evaporate pheromone on all edges: τij ← (1 - ρ) ×  τij

For each ant k:

For each edge (i, j) in the ant’s tour:
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Deposit pheromone on the edges: τij ← τij + Δτij, where Δτij = Q / Lk (Q is a constant, Lk is the length of the kth ant’s tour)

End For
End For
3. Best Solution Update:
Compare current ant solutions with the best solution so far

If an ant’s solution is better:

Update the global best solution

End If
End For
4. Termination:
If maximum number of iterations is reached:

    Exit loop

End If
5. Output:
   Return the best solution found (routes and total distance).

5. Experimental Analysis
5.1 Computational System Specifications and Parameter Settings
The  main  parameters  that  affect  the  performance  of  the  ACO algorithm are  the  number  of  ants	 (m),  maximum number of

iterations	(maxIter),  pheromone importance factor (α), heuristic importance factor (β), pheromone evaporation rate (ρ) and

total pheromone release	(Q). These parameters are selected through a number of experiments by Li et al. (2020). The optimal

values of these parameters are m=20, maxIter= 100, α=2, β=5, ρ=0.4 and Q=100, which are chosen for this study.

The computational system is equipped with an Intel(R) Core(TM) i7-2600 CPU running at 3.40 GHz, 12 GB of RAM, and

operated on the Windows 10 platform. The computations were performed using MATLAB R2021b.

5.2 Model Validation
The ACO-based VRP model is tested on a number of well-known VRP benchmark instances from Solomon (1987) with 25,

50, and 100 nodes. The instances are selected randomly from the available benchmark instances. The results for the instances

are shown in Table 4. Also, the optimal routes and iteration performances for the three instances are presented in figures 4 and

5, respectively.

Table 4 Results of Benchmark Instances
Instance Number of Nodes Number of Vehicles Optimal Distance (km)
R106 25 6 518.39

RC101 50 6 833.05

C201 100 9 1168.39

Figure 4 Optimized Paths for the Instances (a) 25 Nodes, (b) 50 Nodes, and (c) 100 Nodes

Figure 5 Iteration Performances of the Instances (a) 25 Nodes, (b) 50 Nodes, and (c) 100 Nodes

5.3 Sensitivity Analysis
A sensitivity  analysis  is  performed to  visualize  the  relationships  between the  input  parameters  and the objective functions.

PRCC sensitivity analysis is utilized to study the output sensitivity to each input parameter, as shown in figure 6. The results
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are  shown in Table  5,  which revealed that  vehicle  speed has the most  significant  influence in the case of  FC, followed by

distance and load on the vehicle. Vehicle speed is also the most crucial factor for TC, followed by distance, fuel price, and

driver wage. The analysis also revealed that load has a very insignificant influence on transportation costs. Concerning CS, the

importance degree of the customers has the highest impact, while the arrival time of the vehicles to the customer points is of

low importance.  The negative  sign of  the PRCC values  indicates  the inverse relationship between the inputs  and objective

functions. Furthermore, lower p-values ( = 0	or ≈ 0) suggest statistically significant relationships, whereas the higher p-values

confirm the relationships are not statistically significant.

Table 5 Results of PRCC Sensitivity Analysis with P-Values
Objective Input Variable PRCC Value p-value

Distance 0.527 0.005

Load 0.053 0.794FC
Speed -0.843 0

Distance -0.577 0.002

Load 0 1.0

Speed -0.681 0

Fuel Price 0.367 0.06

TC

Driver Wage 0.105 .603

Importance Degree 0.949 0CS
Arrival Time 0.316 0.108

Figure 6 PRCC Sensitivity Analysis Results for Each Output

5.4 Experimental Analysis
For the applicability of the proposed model, it is applied to a logistics distribution center. The details of the customers used in

this study are obtained from Li et al. (2020). The number of vehicles of each type is selected to serve all the customers at a time.

The customer-related information, such as coordinates, demands, time windows, and service times, are shown in Table 6.

Table 6 Customer-Related Information (Li et al., 2020)
Customer No. X-Coordinate (km) Y-Coordinate (km) Demand (kg) Earliest Time Latest Time Service Time (min)

0 651.49 3262.69 -- 6:00 18:30 --

1 690.95 3292.71 250 6:00 14:30 15

2 654.96 3238.10 350 7:30 18:30 21

3 660.84 3279.95 700 8:00 15:30 42

4 655.45 3279.86 800 7:00 16:30 48

5 644.44 3264.24 350 7:00 14:30 21

6 628.88 3251.58 750 6:30 13:30 45

7 653.88 3290.42 600 6:30 17:00 36

8 659.26 3264.12 750 8:00 14:00 45

9 685.13 3274.12 650 9:00 12:00 39

10 601.68 3302.16 400 6:00 12:00 24

11 660.06 3266.58 400 8:00 13:30 24

12 602.72 3253.59 800 6:00 16:30 48

13 628.30 3260.53 400 8:30 16:00 24

14 670.12 3271.63 700 6:00 14:00 42

15 633.20 3271.69 700 9:00 13:00 42

16 598.54 3252.48 900 7:00 15:00 54

17 695.97 3277.53 700 6:30 10:30 42

18 656.49 3269.95 400 6:30 12:00 24

19 658.53 3272.59 250 6:30 12:00 15

20 664.91 3252.67 600 7:30 14:00 36

21 601.54 3280.18 1200 7:30 14:00 72

22 618.34 3275.17 400 6:00 14:00 24

23 638.94 3273.85 450 7:00 11:30 27

24 647.76 3271.02 700 7:30 11:00 42

25 682.16 3239.80 1000 8:00 16:30 60

26 641.11 3277.38 300 8:00 16:00 18
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27 644.88 3277.62 150 7:00 12:00 9

28 643.89 3255.11 1200 6:30 16:00 72

29 621.29 3239.48 800 7:00 17:00 48

30 688.03 3290.66 550 8:00 11:00 33

31 611.33 3255.55 500 8:00 16:30 30

32 638.20 3301.79 500 8:30 13:30 30

33 690.82 3299.04 450 7:30 16:30 27

34 654.87 3255.63 750 8:30 13:30 45

35 699.47 3284.12 400 7:00 17:00 24

36 626.80 3289.62 750 7:30 16:30 45

37 679.63 3274.57 600 7:30 16:30 36

38 692.99 3245.47 550 6:30 16:00 33

39 640.68 3264.94 900 6:30 12:00 54

40 637.24 3287.77 0800 6:30 13:30 48

41 659.19 3290.56 1200 8:00 13:30 72

42 647.72 3274.21 800 6:00 15:00 48

43 682.03 3261.41 900 7:00 14:00 54

44 693.66 3267.76 550 8:30 14:30 33

45 626.83 3248.00 550 7:30 14:00 33

5.5 Result and Discussion
The selected ACO parameters were implemented in the experimental study over the obtained distribution company. The final

optimized route network is shown in figure 7. It covers a total distance of 1030.07 km with the help of 11 heterogeneous vehicles

to serve 45 customers. The sub-routes of the vehicles are presented in Table 7.

Table 7 Presentation of the Sub-Routes of the Vehicles
Vehicle Number Distance Traveled (km) Sub-Route

1 32.12

0 → 5 → 

39 → 28 →
0

2 40.37

0 → 34 → 

8 → 11 → 

18 → 19 →
0

3 41.47

0 → 24 → 

42 → 27 →
26 → 23 →

0

4 56.14
0 → 4 → 3 

→ 14 → 0

5 127.51

0 → 30 → 

1 → 33 → 

35 → 17 →
0

6 78.87

0 → 15 → 

36 → 40 →
0

7 85.41

0 → 45 → 

29 → 6 → 

13 → 0

8 152.75

0 → 22 → 

21 → 10 →
32 → 0

9 96.76

0 → 43 → 

9 → 44 → 

0

10 121.15

0 → 2 → 

20 → 25 →
38 → 0

11 89.64

0 → 7 → 

41 → 37 →
0
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Figure 7 Final Optimized Route Network

From the experimental analysis, the results obtained are as follows:

 Total distance of optimal route: 1030.07 km

 Total traveling time by all the vehicles: 1653.92 min 

 Average customer satisfaction: 49.55%

 Total fuel consumption: 85.11 L

 Total transportation cost: 205.72 £.

The convergence curve obtained with the selected parameter settings is shown in figure 8. The downward trend of the curve

with iteration progress indicates that the ACO algorithm effectively improves the solution over time. However, tuning the ACO

parameters may improve the efficiency or convergence time depending on the specific goals.

Figure 8 Iteration Performance of the Final Route

5.6 Managerial Implications
This study presents a decision-support model for complex transportation networks, offering a near-accurate approximation of

objective function values. The model integrates economic, environmental, and social dimensions, aligning with the three pillars

of sustainability. Therefore, this study will help logistics companies model their transportation network by selecting suitable

objective functions depending on their customized requirements. The key findings and managerial implications are illustrated

below.

 Distance and Speed:  Significant correlations with FC and TC suggest these are critical factors. Managers can optimize

routes, apply clustering strategies, and leverage technology to find efficient paths. Emphasizing consistent, higher average

speeds (within safe limits) and implementing speed-monitoring systems can enhance fuel and cost efficiency.

 Fuel price:  Despite  marginal  significance,  fuel  price  remains  a  significant  expense,  influenced by market  fluctuations.

Managers  should track price  trends,  consider  alternative  fuels,  and explore  bulk purchasing agreements  to  control  fuel

costs.

 Driver wage:  While  wage  impacts  on  TC are  minimal,  aligning  driver  schedules  and  compensation  with  performance

incentives can improve productivity and satisfaction without substantial cost increases.

 Customer satisfaction: The strong correlation between the importance degree and CS underscores the value of meeting

core  customer  needs.  Managers  should  prioritize  timely  deliveries,  product  condition,  and  other  high-impact  factors,

regularly updating services based on customer feedback. Arrival time, though not highly significant alone, still contributes

to CS and should be balanced with reliability and communication.
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This model provides logistics companies with insights to refine routing, manage costs, and improve customer satisfaction,

helping achieve more sustainable and efficient operations.

6. Conclusion and Future Research
The current study proposes a multi-objective sustainable vehicle routing problem with time windows consideration in a time-

dependent  scenario.  It  considered  all  three  sustainability  issues  to  reduce  carbon  emission  and  transportation  costs  and

maximized customer satisfaction with the help of the ACO algorithm. Customer satisfaction is modelled as a generalized bell

membership function that considers flexible time windows. Furthermore, in fuel consumption calculation, a variable part is

considered due to changes in vehicle speeds in between.

The study contributed to both the theory of VRP study through the enrichment of the vehicle routing optimization model. It

also contributed to the practicality of the VRP study by applying the proposed model to a case company. So, the study will help

logistics companies to plan their own distribution routes to attain sustainable development. Still, there are some limitations to

this study. However, some key areas for further research include integrating renewable energy sources for vehicle recharging,

hybrid vehicle routing models, the impact of policy regulations on sustainable VRP solutions, etc.
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