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Within the fashion industry, fabric inspection for visual defects such as color, printing-measurement and density is critical 

for manufacturing apparel. This process is highly dependent on individual capability and leads to production error. 

Industry solution helps detect piling and tear-based defects but lacks in detecting prints consistency like repeat height and 

width. In this research article, we propose an algorithmic approach to calculate the repeat width and repeat height from 

fabric image using computer vision for 3 fabric print categories stripes, prints and checks. This solution helps reduce 

potential production delays. 
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1. Introduction 
In the fashion industry, there are multiple categories of fabric patterns. These patterns can broadly be classified, based on motifs 

such as geometric motifs (including geometric shapes, stripes, and plaids), realistic motifs (replicas or imitations of natural or 

man-made items) and abstract motifs (color, shape, and size combinations that have no link to natural or man-made items). 

Designers create these patterns considering multiple factors such as current trends, style specifications, colors, theme and 

cultural factors. In pattern design, a repeat refers to an identical pattern laid out in a consistent, repetitive layout with horizontal 

or vertical spacing. A repeat can include a simple motif or an intricate combination of multiple motifs. There are an infinite 

number of ways to arrange these repeats on fabric, but a few basic layouts are commonly used such as stripes, checks and prints. 

Stripes are lines arranged in vertical, horizontal, or diagonal directions across the fabric, giving it a simple, linear look. Checks, 

on the other hand, are created by intersecting lines that form a grid-like pattern resembling plaids. Prints can include various 

designs, like geometric shapes or abstract motifs, arranged across the fabric to add depth and visual interest. According to [1], 

quality is a primary concern in the fashion industry. Therefore, quality control and inspections are conducted at multiple stages 

in apparel manufacturing. Fabric defects can happen due to multiple factors and generally account for 85% of the defects in the 

garment industry. The detection, identification and prevention of such defects, therefore, becomes essential. In printed fabrics, 

inconsistencies in repeat patterns can create noticeable flaws, which affect the apparel’s quality and appeal. 

Various methodologies have been introduced to ensure design precision and alignment across fabrics. For instance, the author 

describes a technique for detecting repeat patterns using adaptive template matching [2], while in paper [3], another approach 

leverages the autocorrelation function (ACF) to estimate repeat patterns by identifying correlation peaks in fabric images. 

Additional methods in this field evaluate texture characteristics such as yarn count, weave repeat, and surface roughness by 

applying quantitative models like U-Net and WLRL (weighted low-rank decomposition with Laplace regularization). Although 

these approaches target defect identification and detection in repeat patterns, they exhibit certain limitations such as precise 

calculation of repeat width and height, which is essential for effective defect detection, especially in designs involving stripes, 

checks, and prints. 

 

2. Literature Review 
In paper [4], the author has utilized fabric images to measure the texture characteristics such as weave repeat, yarn counts and 

roughness. However, it is limited to detecting defects in weaving and fabric roughness. 

The author has utilized adaptive template matching for detecting the repeat patterns [2]. The template is composed of a portion 

of an image segmented on the principle of maximum edge density. The matching segments that are similar to template, are 

identified and two displacement vectors are used between adjacent matching segments to estimate size of the repeat pattern. A 

limitation of this approach is its reliance on the detected edges, which means results can vary if images lack sufficient clarity. 

However, acquiring industry-standard imaging equipment can be prohibitively expensive. 

The author has utilized Unet model (the model consists of two parts encoder and decoder) for detecting and locating the 

defects in fabric images [5]. For encoding MobileNetV2 has been used to extract features followed by five deconvolution layers 

as a decoder. However, it only considers defects such as oil stains, tears, etc. which are clearly identifiable visual defects but, 

it does not cater to identifying defects in printed patterns such as inconsistent repeat width and repeat height.  

In paper [6] the author has proposed a WLRL model to detect defects in printed fabrics and received an accuracy of 98%. 

Again, the defects covered in this model are prominent visual defects such as holes, stains, tears, etc. But it does not encompass 

the printed pattern defects. 
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Nasri et al. [3] utilized an auto correlation function (ACF) to estimate periodic Islamic Geometrical Pattern (IGP), by 

identifying correlation peaks in fabric images. The peak detection is considered as an optimization problem and uses genetic 

algorithm as a solver. 

The author has broken the image into small non-overlapping images of window size N*N, where every small image is 

classified as defective and non-defective utilizing gaussian markov random field based on likelihood ratio of size alpha [7]. 

In paper [8], fourier transform is used to detect defects in textured fabrics. They transform fabric images into a spectrum 

space and then obtain an optimal radius (R). They then set the frequency components outside the circle with radius (R) to zero. 

Hence, preserving the defects as it is and converting remaining image into uniform gray scale. 

 

3. Proposed Methodology 
This section outlines the proposed methodology, offering brief descriptions of all segments involved in the approach, which are 

essential for calculating repeat width and repeat height. The complete processes for prints, stripes, and checks are illustrated in 

Fig. 1 (a), (b) and (c). 

 

 

Figure 1 Process flow for repeat detection: (a) Stripes (b) Checks (c) Prints 

 

3.1 Standardization of Image 

Each image undergone a detailed inspection to identify and address inconsistencies, such as rotations, fabric folds, and visible 

labels. Following this, extraneous elements like tags are carefully cropped out to maintain focus on the fabric itself. Finally, the 

processed images are resized to a standardized resolution of 200x200 for consistency in analysis, as illustrated in Fig. 2. 

 

 

Figure 2 Image Standardization 

 

3.2 Edge Detection 

After image standardization, edge detection is applied to extract relevant information from the design. The Canny edge detector 

was utilized with a threshold range of 150 to 255, determined by calculating the minimum and maximum averages of pixel 

intensity, as shown in eq 1 and eq 2. The visual representation of this stage is illustrated in Fig. 3 and Fig. 4. 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑖𝑛 =  𝜇𝑝𝑖𝑥𝑒𝑙  −  𝑘 ∗ 𝜎𝑝𝑖𝑥𝑒𝑙  (1) 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑎𝑥 =  𝜇𝑝𝑖𝑥𝑒𝑙  +  𝑘 ∗ 𝜎𝑝𝑖𝑥𝑒𝑙  (2) 

 

where: 

• 𝜇𝑝𝑖𝑥𝑒𝑙  is the mean pixel intensity of the standardized image, 

• 𝜎𝑝𝑖𝑥𝑒𝑙  is the standard deviation of pixel intensity, 

• k is a constant that determines the range around the mean intensity (e.g., for a range of 150 to 255, k can be adjusted to 

achieve the desired threshold values). 
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Figure 3 Edge Detection in Prints 

 

 

Figure 4 Edge Detection in Checks 

 

3.3 Contour Detection 

Using OpenCV’s chain approximation method, we detect object boundaries within an image which is essential for shape 

analysis and object recognition. This method optimizes memory by storing only essential contour points, omitting redundant 

ones along straight lines. As a result, contours are reduced to key points that retain shape accurately, enhancing processing 

speed and minimizing memory utilization. This technique is widely applied in object detection tasks. 

 

3.4 Line Detector 

After obtaining all the edges of an image, for checks and stripes, we iterate row-wise and calculate the sum of each pixel value. 

This sum is then normalized by dividing by 𝐼𝑚𝑎𝑥  and then by 𝑁𝑝𝑦.  

If the normalized value exceeds 0.6 (indicating that 60% of the pixels in a line has intensity of 1), we classify it as a line and 

reconstruct the pattern on a new image, as shown in Fig. 5. 

The line exist condition is mentioned below: 

 

𝐼𝐴𝑉𝐺𝑦 =  
∑ 𝑝𝑥

𝑦𝑛
𝑥=0

𝐼𝑚𝑎𝑥∗ 𝑁𝑝𝑦
   (3) 

 

𝐼𝑚𝑎𝑥 =  255 , 𝑁𝑝𝑦 = 200 (4) 

 

Where 

• 𝐼𝑚𝑎𝑥  is the max pixel intensity, 

• 𝑁𝑝𝑦 is the no. of pixels in a row, 

• 𝐼𝐴𝑉𝐺𝑦  average pixel intensity of a vertical line y 

• 𝑝𝑥
𝑦

 pixel intensity at point (𝑥, 𝑦) 

After all lines have been detected using above mentioned equations, we then reconstruct the pattern by creating a new image 

and adding lines at same location and with consistent pixel intensity of 𝐼𝑚𝑎𝑥 as shown in Fig 5. 

 

 

Figure 5 Reconstructed Pattern 
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3.5 Box Detector 

Once all lines are detected and the pattern is reconstructed for stripes and checks from section 4.4, we iterate row-wise using 

pairs of horizontal and vertical lines to identify vertices (or intersection points) of each rectangle. Boxes that fulfill the 

requirements of eq. 6 are the only ones chosen. Additionally, we calculate metadata, such as the area for each identified box. 

 

 

Figure 6 Detected Lines in Checks 

 

𝑉𝑖𝑗 = {𝑣(𝑖,𝑗), 𝑣(𝑖,𝑗+1), 𝑣(𝑖+1,𝑗), 𝑣(𝑖+1,𝑗+1)}  (5)  

 

∀ 𝑣(𝑖,𝑗)  = {
 0 < 𝑥 < 200
 0 < 𝑦 < 200

 (6) 

 

where: 

• 𝑣(𝑖,𝑗) denotes vertices of rectangles given their location (𝑖𝑡ℎ, 𝑗𝑡ℎ), 

 

3.6 Min Enclosing Circle for Contours 

Once all the contours of an image are obtained from section 4.3, we iterate over them and find an enclosing circle that 

encompasses that contour with minimum radius as shown in Fig 7. Similarly, we find enclosing circles for all contours and 

store the meta information such as center of enclosing circle and its radius in a python dictionary-based format.  

 

 

Figure 7 Min Enclosing circles for Prints 

 

4.6.1 Center Exist Condition: Radius 

After identifying all contour centers from Section 4.6, we calculate the mode of the radii among all enclosing circles. We then 

retain only the circles with a radius matching this modal value. This constraint ensures uniformity in shape, reflecting the 

consistency typical of repeating patterns. 

 

𝑅𝑖 = {𝑅1, 𝑅2, … … . , 𝑅𝑛}  (7) 

 

𝑓𝑖 = { 𝑓1, 𝑓2, … … . . , 𝑓𝑛 } (8) 

 

𝑅𝑚𝑜𝑑𝑒 =  𝑓𝑚𝑎𝑥  (9) 

 

where: 

• 𝑅𝑖 denotes radius of a min enclosing given its location (𝑖𝑡ℎ), 

• 𝑓𝑖 denotes frequency of a min enclosing at (𝑖𝑡ℎ) location, 

 

4.6.2 Removal of Irrelevant Centers 

Once we obtain the centers of enclosing circles, we identify irrelevant centers that arise from the complexity of patterns, such 

as concentric circles. Additionally, in instances where edges are not fully enclosed in certain fabric prints, multiple contours are 

detected. To remove those irrelevant centers, we have used gaussian based outlier detection. We calculate the Euclidean distance 
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distribution for each center, representing the distances from all remaining points as shown in the following equations. This 

results in N distributions from which we extract points that lie at the minima and are considered outliers relative to other 

distances in the distribution, using the interquartile range. 

After obtaining the point combinations, we average them to prevent information loss, which could negatively impact the 

accuracy of our calculations for repeat width and repeat height. 

 

𝐶(𝑖,𝑗) = { 𝑐11, 𝑐12, … … . . , 𝑐𝑛𝑛 }  (10) 

 

𝐷(1,𝑛) = { 𝑑(1,2), 𝑑(1,3), … … . . , 𝑑(1,𝑛) }  (11) 

 

𝑑(𝑖,𝑗) =  √(𝑐𝑥2 − 𝑐𝑥1)2 +  (𝑐𝑦2 − 𝑐𝑦1)22
  (12) 

 

Irrelevant centers equation: 

 

𝐷(1,𝑛)  = { 𝑑(1,2), 𝑑(1,3), … … . . , 𝑑(1,𝑛) }  {
 𝑑(𝑖,𝑗) <  𝐼𝑄𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

  𝑑(𝑖,𝑗) >  𝐼𝑄𝑅𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
  (13) 

 

where: 

• 𝐶(𝑖,𝑗) denotes centre of a min enclosing circle of a contour given its location (𝑖𝑡ℎ, 𝑗𝑡ℎ), 

• 𝑑(𝑖,𝑗) denotes distance of between two centres, 

• 𝐼𝑄𝑅 denotes inter quartile range, 

 

3.7 Defining Origin of Repeat for Prints 

To calculate the repeat width and height of patterns in prints, it is necessary to take one point of reference and treat it as origin. 

In this case, it is the centre pixel of image located at (100, 100). We have considered the centre-point 𝑪𝒐 as origin in fabric 

pattern, because the image can be inconsistent at extreme ends such as left, right, up and bottom in terms of clarity and pixel 

intensity. 

 

4.7.1 Identifying Vertical and Horizontal Points 

After, defining the origin for prints we calculate Euclidean distance from all pattern centre points. The centre which is situated 

at minimum distance from 𝑪𝒐 is taken as reference 𝑪𝒓𝒆𝒇. Then, we find the points present in vertical and horizontal direction 

by calculating difference 𝑫𝒅𝒊𝒇𝒇 of co-ordinates to all pattern centres with respect to the reference centre 𝑪𝒓𝒆𝒇 using eq. 15 and 

eq. 16.  

The points which satisfy the constraints given in eq. 17 and eq. 18 are considered.  

 

𝐷𝑑𝑖𝑓𝑓  =  (  𝐷𝑥  , 𝐷𝑦 )     (14) 

 

𝐷𝑥  =  ∥ 𝐶𝑟𝑒𝑓 𝑥 −  𝐶𝑖 𝑥 ∥   (15) 

 

𝐷𝑦  =  ∥ 𝐶𝑟𝑒𝑓 𝑦 −  𝐶𝑖 𝑦 ∥   (16) 

 

Vertical Points Constraint 

 

∀ 𝐷𝑑𝑖𝑓𝑓   ,   0 ≤ 𝐷𝑥  ≤ 2  (17)  

 

Horizontal Points Constraint 

 

∀ 𝐷𝑑𝑖𝑓𝑓  , 0 ≤ 𝐷𝑦  ≤ 2   (18) 

 

where: 

• Dx denotes magnitude of x coordinate distance of centre from centre of reference 

• Dy denotes magnitude of y coordinate distance of centre from centre of reference 

• Cref x denotes x-coordinate value of center of reference 

• Cref y denotes y-coordinate value of center of reference 

The graphical representation is shown in Fig 8. 
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Figure 8 (A) Vertical Points w.r.t Ref Point (b) Horizontal Points w.r.t Ref Point 

 

3.8 Calculating Repeat Width & Repeat Height 

In case of prints we then calculate Euclidean distance from reference point to all the pattern centers present in vertical and 

horizontal direction which satisfy the afore-mentioned constraints in section 4.7.1 for prints as shown in Fig 8. 

 

4.8.1 Area Wise Similarity: (Checks) 

We find area wise similarity for identifying a repeat. After, receiving results from box detection, we traverse over the boxes 

row wise using its location. We then take the first box area as reference and calculate the ratio of the area of new box to reference 

box as shown in equation 19. 

 

𝜌𝑖 =  
𝐴𝑖

𝐴𝑜
          (19) 

 

where: 

• 𝐴𝑜 denotes area first box taken as reference, 

• 𝐴𝑖 denotes area of box at location (𝑖𝑡ℎ), 

• 𝜌𝑖 denotes area wise similarity ratio, 

We create two sets: in the first, we add each box's coordinates and area until the ratio exceeds 2. In the second set, we continue 

adding box metadata until the ratio again exceeds 2. This approach helps identify when each small pattern repeats in terms of 

area. Finally, we extract the first box from each set and calculate the distance between them to determine the repeat width and 

height. 

The value 2 is used because it signifies that the accumulated area has doubled, marking the end of one pattern cycle and the 

beginning of the next. This makes it an effective threshold for identifying the point at which the pattern repeats. 

 

4.8.2 Distance Wise Similarity: (Stripes)  

We find distance wise similarity for identifying repeat. After, receiving results from line-detection we find distance between 

two consecutive lines and then take ratio of distance of new line with respect to reference distance of reference line as shown 

in equation 20.  

 

𝜂𝑖 =  
𝑑𝑖𝑠𝑡𝑖

𝑑𝑖𝑠𝑡𝑜
      (20) 

 

where: 

• 𝑑𝑖𝑠𝑡𝑜 denotes distance between first two consecutive lines taken as reference, 

• 𝑑𝑖𝑠𝑡𝑖  denotes distance between next two consecutive lines at location (𝑖𝑡ℎ), 

• 𝜂𝑖 denotes distance wise similarity ratio 

We create two sets: in the first, we add each line's coordinates and thickness until the ratio exceeds 2. In the second set, we 

continue adding line’s metadata until the ratio again exceeds 2. This approach helps identify when each small line repeats in 

terms of distance. Finally, we extract the first line from each set and calculate the distance between them to determine the repeat 

width and height. 

The value 2 is used because it signifies that the accumulated area has doubled, marking the end of one pattern cycle and the 

beginning of the next. This makes it an effective threshold for identifying the point at which the pattern repeats. 

 

4.8.3 Final Result: Averaging: 

Next, we sort the width and height instances based on area similarity for checks and distance similarity for stripes, while also 

identifying vertical and horizontal points for prints. We then select the two smallest distance values, calculate their average, 

and return this average as the repeat width and repeat height, as shown in equation 21. 

 

𝐴𝑣𝑔(𝑀1, 𝑀2)  =  
𝑑𝑖𝑠𝑡𝑀1+ 𝑑𝑖𝑠𝑡𝑀2

2
    (21) 
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Figure. 9 Detected Repeat in Checks and Print 

 

4. Conclusion 
In conclusion, our proposed methodology for detecting visual defects by calculating repeat width and height offers a more 

accurate and adaptable solution for identifying fabric print inconsistencies. While this approach is currently tailored to checks, 

stripes, and print patterns, it can easily be extended to other fabric patterns across the industry. This methodology not only 

simplifies the defect detection process but also holds potential for broader applications in quality assurance. With further 

refinements, such as standardizing image capture distances to convert pixel measurements into centimeters, our approach can 

achieve even greater precision. 

 

5. Future Scope 
There are numerous fabrics patterns available across the fabric industry, apart from checks, stripes and prints. By implementing 

this approach, addressing discrepancies in repeat width and repeat height for other patterns will become more manageable. 

Also, the current approach will be improved simultaneously in accordance with factors that can drive better results and 

overcome any shortcomings in the future. The approach can also be modified according to other prints and their requirements. 

Apart from simplifying the process of detecting defects, the approach can also be used as an integral part of quality check and 

quality control. Once the approach gains success by calculating the repeat width and repeat height in the fabric industry, it may 

transcend boundaries and can be used in other similar industries for similar aspects. Additionally, once we standardize the image 

capture distance, converting pixel measurements to centimeters will offer further precision. 
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