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The expanding corporate data volumes pose challenges as well as opportunities for business analytics applications. The 
present day business environments demand real time processing of data to support real time decision making for keeping 
the business competitive.  Machine learning techniques have been successfully applied in various domains such as 
finance, retail, marketing etc. to gain insights from data and to improve decision making.  These applications need to 
have the capacity to process large volumes of data and hence presents various implementation challenges.  This work 
focuses on developing machine learning techniques which can process big data for the purpose of business analytics. 
Classification is one of the most studied data mining techniques and One Class Classification (OCC) has got various 
applications in business analytics. Support Vector Data Description (SVDD) is a popular kernel based OCC method used 
for outlier detection. But because of the computational complexity of SVDD they are not preferred in applications that 
require great classification speed.  This work proposes three approaches based on SVDD to make efficient outlier 
detection possible using Big Data. Experiments conducted to assess feasibility of the approach shows that it has an 
order-of-magnitude advantage in terms of running time. This paper also discuss a use case from business and 
demonstrates the application of the proposed approach using a real world dataset obtained from UCI machine learning 
repository. 

Keywords:  SVDD, Big Data, Hadoop, 

 
1. Introduction 

Nowadays organizations gather terabytes of data from their customers and software applications. There is a need to analyze 
these massive datasets for various uses, e.g. providing services that are increasingly personalized. ‘Big Data’ as input enhances 
the inferential power of established algorithms, but it challenges even state-of-the-art computation and analysis methods.  
Classification tasks, especially one-class classification tasks, where single class information is available in high quality and 
resolution, and a few outliers exist, have numerous applications in business. Our research will focus on developing machine 
learning techniques on big data for the purpose of making one-class classification practical on large business databases. 
Support Vector Data Description (SVDD) is a popular kernel based method used for one class classification [6] [12] [13][14]. 
The major drawback of this method is its computational complexity during the training phase and hence making it not feasible 
for very large datasets. The current best complexity to solve the SVDD training problem is O (N), an improvement from the 
original O (N3) as demonstrated in the core vector application of [8]. 
   This work proposes and demonstrates a novel method LT-SVDD that could be used to analyze large data sets. The proposed 
algorithm reduces the complexity by avoiding the calculation of the Lagrange multipliers by locating an approximate pre-image 
of the SVDD sphere’s center in the input space during the training phase itself. It retains the benefit of the kernel trick: i.e. a 
minimum enclosing space is more descriptive of the data when calculated in a higher-dimensional feature space. As a result 
we could reduce the complexity to O (d) where d is the dimension of the data set. The crux of the training algorithm is a 
gradient descent of the primal objective function using Simultaneous Perturbation Stochastic Approximation (SPSA). We also 
propose a variant of LT-SVDD named as ELT-SVDD to eliminate an inherent drawback of LT-SVDD. ie. the decision hyper 
sphere is restricted to a sphere in the input space.   For dealing with real time applications on Big data we propose the 
hadoopization of ELT-SVDD which is named as HELT-SVDD. 
 
1. Related Work 
Support Vector Data Description (SVDD) is a popular one class classifier involving creation of a hyper-sphere in the pattern 
space around the target class data with the minimum radius to encompass almost all the target instances and exclude the non-
target ones  [8].  
Given a set of data points,x୧; i=1: N, the objective is to 
 
minimize: F(R, a) = Rଶ + C∑ ξ୧୧                                                  (1) 
with the constraints  ‖x୧ − a‖ଶ ≤	Rଶ + ξ୧, ξ୧ ≥ 0		∀i 
where R is the radius and a is the center of the sphere and the slack variables ξ୧ allow the possibility of outliers in the training 
set.  For ܰ target patterns of dimension ݀	given for training, the current best complexity to solve SVDD training problem is 
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ܱ(ܰ))-an improvement from the original	ܱ(ܰଷ)as demonstrated in   [2].  The objective function of SVDD, eqn(1)  can be 
translated into the following form by employing Lagrangian multipliers α୧ ≥ 0 and  γ୧ ≥ 0 as: 
O(R, a, α୧ ,γ୧ , ξ୧) = Rଶ + 	C∑ ξ୧୧ −∑ α୧{Rଶ

୧ + ξ୧ − (‖x୧‖ଶ − 2a. x୧ + ‖a‖ଶ)} −∑ γ୧ξ୧୧                                                               (2) 
O should be minimized w.r.t.	R,	a,ξ୧ and maximized w.r.t α୧and γ୧. The parameter C controls the trade-off between the volume 
and the errors and ξ  is the slack variable. Setting partial derivatives (w.r.t a and R) to zero gives the center of the sphere as a 
linear combination of the objects as given by: a = ∑ α୧x୧୧ ; the distance from the center of the sphere, a, to (any of the support 
vectors on) the boundary, Rଶ is given by: Rଶ = (x୩. x୩) − 2∑ α୧(x୧. x୩)୧ + ∑ α୧α୨൫x୧. x୨൯୧,୨   
Also,   ∑ α୧ = 1୧    and α୧ ≥ 0.   
The function becomes 
L = ∑ α୧୧ (x୧. x୧)−∑ α୧α୨୧,୨ ൫x୧. x୨൯  
In all formulae, objects x୧ appear only in the form of inner products with other objects (x୧. x୨ ) and these inner products can be 
replaced by Gaussian kernel function to obtain more flexible methods. By placing kernel functions K(x, y) instead of the 
product (x, y) in the above equations we have: L = 1 −∑ α୧α୨K(x୧୧,୨ , x୨) 
Only objects x୧ with α୧> 0 are needed in the description and these objects are therefore called the support vectors of the 
description (SV’s).   Hence, an object in feature space,z, is accepted by the description (stated to be within the boundary of the 
sphere) when: ‖(z − a)‖ଶ = (z −∑ α୧x୧)୧ (z −∑ α୧x୧)୧ ≤ Rଶ.  Similarly, by applying the kernel function, the decision 
function now becomes: 
1− 2∑ α୧୧ K(z, x୧) + ∑ α୨α୨K൫x୧, x୨൯୧,୨ ≤ Rଶ     
Hence the complexity of SVDD approach is linear in the number of support vectors. 
The testing time complexity of SVDD is reduced in [10] by calculating the pre-image of a point termed 'agent of the centre' of 
the SVDD sphere. The authors in [10] begin by solving the classic SVDD optimization problem of 
Minimize     O୮(R, a୊, ξ୧) = 	Rଶ + 	C	 ∑ ξ୧୒

୧ୀଵ                               (3) 
Subject to ‖ϕ(x୧)−	a୊‖ଶ ≤	Rଶ + 	 ξ୧ ,    ξ୧ 		≥ 	0	,∀i	 ∈ {1. . N} 
Note that a୊ and the kernel-trick based transformation of input pattern x୧ ,	ϕ(x୧), are potentially vectors in infinite dimensional 
space. Since it is convenient using existing computational techniques, it is the dual of this problem that is solved: 
Maximize	Oୢ(α) = 1−	∑ ∑ α୧α୨K(x୧୒

୨ୀଵ , x୨)୒
୧ୀଵ 																		         (4) 

Subject to  ∑ α୧୒
୧ = 1,0 ≤ α୧ ≤ C		∀I	 ∈ {1. . N}	C ∈ ቂଵ

୒
, 1ቃ 

   The expression for the centre of the minimum enclosing ball is obtained as  a୊	 = ∑ α୧
୒౩
୧ୀଵ ϕ(x୧).The key modification that 

[10] proposes relies on calculating a pre-image, in the input space, of this centre a୊	. In particular, they show equivalence of the 
centre with another point named the agent of the centre ψୟ on the input space’s manifold in feature. They essentially solve the 
optimization problem min୶෤‖a୊	 −ϕ(x෤)‖ଶwhere x෤ ∈ 	R୫	is in the space of input patterns and obtain a closed form for the 
solution x෤ as 

x෤ = 	
∑ ∑ α୧α୨୒

୨ୀଵ
୒
୧ୀଵ K൫x୧ , x୨൯x୧
∑ ∑ α୧α୨୒

୨ୀଵ
୒
୧ୀଵ K൫x୧ , x୨൯

 

   By employing the Gaussian kernel, the pre-image of the agent of the sphere centre, x෤ can be calculated as :   

x෤ = ଵ
஑౐୏஑

∑ ∑ α୧α୨e
షቛ౮౟ష౮ౠቛ

మ

మಚమ୒
୨ୀଵ x୧୒

୧ୀଵ   
Once x෤ is known, the classification of a pattern x	is now O(1) since the decision function can be calculated as explained in [10] 
as: 

D୤(x) = ‖ϕ(x)− a୊‖ଶ − Rଶ 	= 	 ቛϕ(x) − ம(୶෤)
ஓ
ቛ
ଶ
− Rଶ = cᇱ − ଶ

ஓ
K(x, x෤), where cᇱ = 1− Rଶ + 1

γଶ	ൗ is a constant and γ = ந౗
ୟూ

 . 
This expression for	x෤ is, however, calculable only after the training problem is solved in the regular fashion, i.e. by obtaining α୧  
in [10]. 
   Studies suggest that primal optimization will be superior for large scale optimization[5], since when the number of training 
points is large, the number of support vectors will likely also be large thus resulting in updates of nearly N Lagrange multiplier 
parameters during optimization and a complicated decision function. 
 

2. Proposed Methods 
1.1 Lightly Trained SVDD (LT_SVDD) 
The current work proposes a primal variant of the SVDD problem which calculates the pre-image x෤ in input space itself.  In 
particular, what is obtained is an approximate solution to the SVDD problem since the exact pre-image of the feature space 
ball’s centre does not exist in input space.  Besides, in the training phase it uses the primal form of the kernelized SVDD 
problem as suggested in [6]. 
   Fig 1 shows the geometric properties of SVDD. Here BF is the feature space unit sphere and BS is the SVDD sphere centered 
at aF.  ௔߰  is the agent of ܽி .  Also, ߶(ݔ௜) is any point on the SVDD sphere and ‘A’ is a support vector.   
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Figure 1 Geometric Properties of SVDD 

 
Using the geometric properties of SVDD we are making two claims.  
Claim1: If any feature space pattern ߶(ݔ௜) is within the (aF, R) SVDD hypersphere, then it is also within the ( ௔߰ , R') sphere.  
Claim 2 :      2.a)    ࡲࢇ = √૚− ૛(ᇱࡾ) (2. b           (ෝ࢞)૛ࣘࡾ = ૛(૚ − √૚ −  (૛ࡾ
Using claims 2.a  and 2.b we can simplify, the SVDD primal problem.  Note the N constraints ฮϕ(x୧) −  a୊‖ଶ ≤  Rଶ +  ξ୧ and 
take ߚ = √1− ܴଶ 
              < ߶(x୧)− a୊,ϕ(x୧)− a୊ >  ≤   Rଶ +  ξ୧ 
       1+< a୊ , a୊ > −2 <  ϕ(x୧), a୊ >  ≤   Rଶ +  ξ୧ 
1+< ψୟߚ,ψୟߚ > −2< ϕ(x୧),ߚψୟ > ≤   Rଶ +  ξ୧   (Using Claim 2a) 
ଶߚ +1                 − ߚ2 <  ϕ(x୧),  ψୟ >  ≤   Rଶ +  ξ୧ 
   The problem is still not soluble due to a୊ belonging to possibly infinite-dimensional feature space. But a further 
transformation is possible as below: 
Minimize       O୮൫Rଶ, ,ොݔ   ξ୧൯ =  Rଶ +  C ∑  ξ୧୒

୧ୀଵ                                         
S.T    1+ ߚଶ − ≥ (ොݔ,x୧)ܭߚ2   Rଶ +  ξ୧        
ߚ                                            = √1− ܴଶ 
                                          ξ୧ ≥  0 ,∀i ∈ {1. . N} 
                                          Rଶ > 0 
   In the training phase we have used Simultaneous Perturbation Stochastic Approximation (SPSA) adapted to sub-gradients as 
in [4] to solve the optimization problem. 
   The algorithm for LT-SVDD is as follows: 
 
Algorithm 1 : LT-SVDD 
Training 

1. Initialize kernel parameters C and σ using same methods as C-SVDD 
2. Solve the pre-image problem for agent of the sphere center by performing optimization in the modified primal to 

calculate the value of R and ݔො. 
Testing 
A data point x୧ is treated as typical if  1+ ߚଶ − ≥ (ොݔ,x୧)ܭߚ2   Rଶ 
 
1.1.1 Experiments 
Initially simulations were performed using synthetic data sets. Training and testing files were created using 
‘pointscreator_gaussian.c’ (sample distribution shown in Figure 2).  C-SVDD and  F-SVDD are implemented using MATLAB 
for comparison of accuracies as well as execution times.  Preliminary experiments on these datasets consistently yielded 
promising accuracies. We have observed that as we increased the distance between the centre of distributions of train and test 
data sets, there is a steady increase in classification accuracy.  Figure 3 shows the observed accuracies for different levels of 
overlapping between train and test data sets. 
 

 
Figure 2 Distribution of Synthetic Datasets 
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Figure 2  Results from Synthetic Data Sets 

 
   Then we have conducted experiments on 3 datasets namely IRIS, WINE and CANCER obtained from the UCI repository.   
Our implementations of C-SVDD and primal based SVDD gave comparable accuracies as shown in Table 1. 
 

Table 1 Comparison of Accuracies 

 
 
Direct Marketing Data set 
We have then conducted experiments using a real world business dataset related with direct marketing campaigns of a 
Portuguese banking institution. This dataset has been obtained from UCI and has been used in [9]. This data set is related to a 
tele-marketing campaign. The problem is to detect the potential customers for a product from the entire customer database. 
The dataset is analysed in [11].    Table 2 shows the accuracy values  of C-SVDD and LT-SVDD from our implementations 
and a comparison with the accuracies from LAD tree algorithm, Radial Basis Function network and SVM obtained from [9]. 
Table 3 shows the comparison of execution times  which indicates that LT-SVDD has a huge advantage over C-SVDD.  
 

Table 2 Comparison of Accuracies  

 
 

Table 3 Comparison of Execution Times 

 

Data set d
Target 
Class N-train N-test C-SVDD F-SVDD LT-SVDD

IRIS 4
0 25 125 100 100 100
1 25 125 86.4 86.4 84
2 25 125 76.6 79.2 78.4

WINE 1
3

0 29 149 94.6 96.6 96.64
1 35 143 79 73.4 78.32
2 24 154 90.3 92.2 96.1

CANCER 9 0 222 461 95.4 81.3 93.71
1 119 564 93.1 95.2 95.74

Model Accuracy
LAD tree algorithm 76.08%

Radial Basis Function network 74.34%
SVM 86.95%

C-SVDD 88.3%
LT-SVDD 90.00%

Model
Training Time 
taken (in sec)

C-SVDD 4.96
LT- SVDD 0.41
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1.1.2 Limitations of LT_SVDD 
Given the Gaussian kernel, the decision hypersphere of LT-SVDD becomes a sphere in the input space according to the 
computation of preimage in FSVDD as explained in [7].  Hence LT-SVDD may not be suitable for many real cases. 
 
1.2 Efficient LT_SVDD (ELT_SVDD) 
Peng et al. in [7] has explained an approach, named as Efficient-SVDD which performs a clustering on the training dataset 
before applying F_SVDD. They calculate the pre-images of the centroid points and then uses the expansion of the images of 
these pre-images to approximate the center of SVDD sphere. Here we apply a similar method to eliminate an inherent 
drawback of LT_SVDD, i.e. a restriction that the SVDD non-anomalous zone has to be a sphere in the input space. The 
proposed algorithm is as below: 
 
Algorithm 2  :  (ELT-SVDD) 
Training  
1. Initialize kernel parameters C and σ 
2. Determine the number of clusters  
3. Find the pre-images ψୟೖ = ϕ(xො௞) with k from 1..c 
4. Calculate the approximation of the center 
 
Testing 
1. For the testing data point x, predict the output using the LT-SVDD decision function 

 
1.2.1 Limitations of ELT_SVDD 
ELT_SVDD will take slightly longer training time than LT-SVDD since clustering is a pre-processing step.  Hence it will not 
be suitable for applications involving near real time responses and for Big data.  In real life applications were datasets cross the 
petabyte threshold, the computational requirements are massive. Hence, efficiency is unlikely if these tasks are vertically 
integrated. 
 
1.3 Hadoopized ELT_SVDD(HELT_SVDD) 
Hadoop is a framework built for implementing reliable and scalable computational networks to  support  data intensive  
distributed applications with a master-slave architecture. Hadoopization of ELT_SVDD will be possible on a Big Data grid 
since individual nodes of this grid can be used to calculate each cluster’s agent-of-center.  Hence these computations can be 
parallelized. The proposed algorithm is as follows: 
 
Algorithm 3 :  (HELT-SVDD) 
Training  
1. Initialize kernel parameters C and σ 
2. Determine the number of clusters c, parcel each cluster to one slave   node 
3. Find the pre-images ψୟೖ = ϕ(xො௞) ,k from 1..c using slave nodes 4.  Calculate the approximation of the center at the master 

node 
 
Testing 
1. For the testing data point x, predict the output using the LT-SVDD decision  function 
 

3. Conclusions 
In this work we proposed a method which solves the SVDD problem using the primal form and reduces the complexity from 
O(N)to O(d) by locating an approximate pre-image of the SVDD sphere’s center during the training phase itself. The use of 
SPSA allows us to calculate the gradient for primal gradient-descent even if there is no closed form for the first derivative. 
Experiments on both artificial and real-world business datasets have demonstrated that the proposed method is promising. The 
future work includes implementation of ELT_SVDD and HELT_SVDD and experimentations using large datasets. The 
outcome of hadoopization would be that analyzing of data streaming in real time would be possible. But an anticipated 
limitation would be that Big data environments consisting of dynamically growing datasets with a large varieties of class types 
can lead to inaccurate classification results. 
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